Publikation:

Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension

Lade...
Vorschaubild

Dateien

Sood_2-1idyw6jldeod6.pdf
Sood_2-1idyw6jldeod6.pdfGröße: 842.29 KBDownloads: 54

Datum

2020

Autor:innen

Sood, Ekta
Tannert, Simon
Bulling, Andreas
Vu, Ngoc Thang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

FERNÁNDEZ, Raquel, ed., Tal LINZEN, ed.. Proceedings of the 24th Conference on Computational Natural Language Learning. Stroudsburg, PA: ACL, 2020, pp. 12-25. ISBN 978-1-952148-63-7. Available under: doi: 10.18653/v1/2020.conll-1.2

Zusammenfassung

While neural networks with attention mechanisms have achieved superior performance on many natural language processing tasks, it remains unclear to which extent learned attention resembles human visual attention. In this paper, we propose a new method that leverages eye-tracking data to investigate the relationship between human visual attention and neural attention in machine reading comprehension. To this end, we introduce a novel 23 participant eye tracking dataset - MQA-RC, in which participants read movie plots and answered pre-defined questions. We compare state of the art networks based on long short-term memory (LSTM), convolutional neural models (CNN) and XLNet Transformer architectures. We find that higher similarity to human attention and performance significantly correlates to the LSTM and CNN models. However, we show this relationship does not hold true for the XLNet models – despite the fact that the XLNet performs best on this challenging task. Our results suggest that different architectures seem to learn rather different neural attention strategies and similarity of neural to human attention does not guarantee best performance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

Konferenz

24th Conference on Computational Natural Language Learning (CoNLL) (online), 19. Nov. 2020 - 20. Nov. 2020
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SOOD, Ekta, Simon TANNERT, Diego FRASSINELLI, Andreas BULLING, Ngoc Thang VU, 2020. Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension. 24th Conference on Computational Natural Language Learning (CoNLL) (online), 19. Nov. 2020 - 20. Nov. 2020. In: FERNÁNDEZ, Raquel, ed., Tal LINZEN, ed.. Proceedings of the 24th Conference on Computational Natural Language Learning. Stroudsburg, PA: ACL, 2020, pp. 12-25. ISBN 978-1-952148-63-7. Available under: doi: 10.18653/v1/2020.conll-1.2
BibTex
@inproceedings{Sood2020Inter-59698,
  year={2020},
  doi={10.18653/v1/2020.conll-1.2},
  title={Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension},
  isbn={978-1-952148-63-7},
  publisher={ACL},
  address={Stroudsburg, PA},
  booktitle={Proceedings of the 24th Conference on Computational Natural Language Learning},
  pages={12--25},
  editor={Fernández, Raquel and Linzen, Tal},
  author={Sood, Ekta and Tannert, Simon and Frassinelli, Diego and Bulling, Andreas and Vu, Ngoc Thang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59698">
    <dc:creator>Vu, Ngoc Thang</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Tannert, Simon</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:creator>Sood, Ekta</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59698/1/Sood_2-1idyw6jldeod6.pdf"/>
    <dc:creator>Tannert, Simon</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T14:40:30Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:abstract xml:lang="eng">While neural networks with attention mechanisms have achieved superior performance on many natural language processing tasks, it remains unclear to which extent learned attention resembles human visual attention. In this paper, we propose a new method that leverages eye-tracking data to investigate the relationship between human visual attention and neural attention in machine reading comprehension. To this end, we introduce a novel 23 participant eye tracking dataset - MQA-RC, in which participants read movie plots and answered pre-defined questions. We compare state of the art networks based on long short-term memory (LSTM), convolutional neural models (CNN) and XLNet Transformer architectures. We find that higher similarity to human attention and performance significantly correlates to the LSTM and CNN models. However, we show this relationship does not hold true for the XLNet models – despite the fact that the XLNet performs best on this challenging task. Our results suggest that different architectures seem to learn rather different neural attention strategies and similarity of neural to human attention does not guarantee best performance.</dcterms:abstract>
    <dcterms:title>Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59698/1/Sood_2-1idyw6jldeod6.pdf"/>
    <dc:contributor>Vu, Ngoc Thang</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T14:40:30Z</dcterms:available>
    <dc:contributor>Sood, Ekta</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Bulling, Andreas</dc:contributor>
    <dc:contributor>Frassinelli, Diego</dc:contributor>
    <dc:creator>Bulling, Andreas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Frassinelli, Diego</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59698"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen