Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
While neural networks with attention mechanisms have achieved superior performance on many natural language processing tasks, it remains unclear to which extent learned attention resembles human visual attention. In this paper, we propose a new method that leverages eye-tracking data to investigate the relationship between human visual attention and neural attention in machine reading comprehension. To this end, we introduce a novel 23 participant eye tracking dataset - MQA-RC, in which participants read movie plots and answered pre-defined questions. We compare state of the art networks based on long short-term memory (LSTM), convolutional neural models (CNN) and XLNet Transformer architectures. We find that higher similarity to human attention and performance significantly correlates to the LSTM and CNN models. However, we show this relationship does not hold true for the XLNet models – despite the fact that the XLNet performs best on this challenging task. Our results suggest that different architectures seem to learn rather different neural attention strategies and similarity of neural to human attention does not guarantee best performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SOOD, Ekta, Simon TANNERT, Diego FRASSINELLI, Andreas BULLING, Ngoc Thang VU, 2020. Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension. 24th Conference on Computational Natural Language Learning (CoNLL) (online), 19. Nov. 2020 - 20. Nov. 2020. In: FERNÁNDEZ, Raquel, ed., Tal LINZEN, ed.. Proceedings of the 24th Conference on Computational Natural Language Learning. Stroudsburg, PA: ACL, 2020, pp. 12-25. ISBN 978-1-952148-63-7. Available under: doi: 10.18653/v1/2020.conll-1.2BibTex
@inproceedings{Sood2020Inter-59698, year={2020}, doi={10.18653/v1/2020.conll-1.2}, title={Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension}, isbn={978-1-952148-63-7}, publisher={ACL}, address={Stroudsburg, PA}, booktitle={Proceedings of the 24th Conference on Computational Natural Language Learning}, pages={12--25}, editor={Fernández, Raquel and Linzen, Tal}, author={Sood, Ekta and Tannert, Simon and Frassinelli, Diego and Bulling, Andreas and Vu, Ngoc Thang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59698"> <dc:creator>Vu, Ngoc Thang</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Tannert, Simon</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Sood, Ekta</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59698/1/Sood_2-1idyw6jldeod6.pdf"/> <dc:creator>Tannert, Simon</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T14:40:30Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:abstract xml:lang="eng">While neural networks with attention mechanisms have achieved superior performance on many natural language processing tasks, it remains unclear to which extent learned attention resembles human visual attention. In this paper, we propose a new method that leverages eye-tracking data to investigate the relationship between human visual attention and neural attention in machine reading comprehension. To this end, we introduce a novel 23 participant eye tracking dataset - MQA-RC, in which participants read movie plots and answered pre-defined questions. We compare state of the art networks based on long short-term memory (LSTM), convolutional neural models (CNN) and XLNet Transformer architectures. We find that higher similarity to human attention and performance significantly correlates to the LSTM and CNN models. However, we show this relationship does not hold true for the XLNet models – despite the fact that the XLNet performs best on this challenging task. Our results suggest that different architectures seem to learn rather different neural attention strategies and similarity of neural to human attention does not guarantee best performance.</dcterms:abstract> <dcterms:title>Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59698/1/Sood_2-1idyw6jldeod6.pdf"/> <dc:contributor>Vu, Ngoc Thang</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T14:40:30Z</dcterms:available> <dc:contributor>Sood, Ekta</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Bulling, Andreas</dc:contributor> <dc:contributor>Frassinelli, Diego</dc:contributor> <dc:creator>Bulling, Andreas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Frassinelli, Diego</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59698"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>