An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
de Ridder, Michael
Yang, Jean
Yang, Pengyi
Lagopoulos, Jim
Hickie, Ian
Bennett, Max
Kim, Jinman
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Neuroinformatics. 2019, 17(2), pp. 211-223. ISSN 1539-2791. eISSN 1559-0089. Available under: doi: 10.1007/s12021-018-9395-8
Zusammenfassung

Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer's disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual Analytics, Functional Magnetic Resonance Imaging, Functional Connectivity, Uncertainty, Framework, Visualization
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690DE RIDDER, Michael, Karsten KLEIN, Jean YANG, Pengyi YANG, Jim LAGOPOULOS, Ian HICKIE, Max BENNETT, Jinman KIM, 2019. An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity. In: Neuroinformatics. 2019, 17(2), pp. 211-223. ISSN 1539-2791. eISSN 1559-0089. Available under: doi: 10.1007/s12021-018-9395-8
BibTex
@article{deRidder2019-04Uncer-44695,
  year={2019},
  doi={10.1007/s12021-018-9395-8},
  title={An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity},
  number={2},
  volume={17},
  issn={1539-2791},
  journal={Neuroinformatics},
  pages={211--223},
  author={de Ridder, Michael and Klein, Karsten and Yang, Jean and Yang, Pengyi and Lagopoulos, Jim and Hickie, Ian and Bennett, Max and Kim, Jinman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44695">
    <dcterms:abstract xml:lang="eng">Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer's disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hickie, Ian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kim, Jinman</dc:creator>
    <dcterms:title>An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity</dcterms:title>
    <dc:contributor>Yang, Pengyi</dc:contributor>
    <dc:creator>Lagopoulos, Jim</dc:creator>
    <dcterms:issued>2019-04</dcterms:issued>
    <dc:contributor>Yang, Jean</dc:contributor>
    <dc:creator>Bennett, Max</dc:creator>
    <dc:creator>de Ridder, Michael</dc:creator>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dc:contributor>de Ridder, Michael</dc:contributor>
    <dc:contributor>Lagopoulos, Jim</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:41:33Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44695"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:41:33Z</dcterms:available>
    <dc:creator>Hickie, Ian</dc:creator>
    <dc:creator>Yang, Pengyi</dc:creator>
    <dc:contributor>Kim, Jinman</dc:contributor>
    <dc:creator>Klein, Karsten</dc:creator>
    <dc:creator>Yang, Jean</dc:creator>
    <dc:contributor>Bennett, Max</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen