An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer's disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DE RIDDER, Michael, Karsten KLEIN, Jean YANG, Pengyi YANG, Jim LAGOPOULOS, Ian HICKIE, Max BENNETT, Jinman KIM, 2019. An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity. In: Neuroinformatics. 2019, 17(2), pp. 211-223. ISSN 1539-2791. eISSN 1559-0089. Available under: doi: 10.1007/s12021-018-9395-8BibTex
@article{deRidder2019-04Uncer-44695, year={2019}, doi={10.1007/s12021-018-9395-8}, title={An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity}, number={2}, volume={17}, issn={1539-2791}, journal={Neuroinformatics}, pages={211--223}, author={de Ridder, Michael and Klein, Karsten and Yang, Jean and Yang, Pengyi and Lagopoulos, Jim and Hickie, Ian and Bennett, Max and Kim, Jinman} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44695"> <dcterms:abstract xml:lang="eng">Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer's disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Hickie, Ian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Kim, Jinman</dc:creator> <dcterms:title>An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity</dcterms:title> <dc:contributor>Yang, Pengyi</dc:contributor> <dc:creator>Lagopoulos, Jim</dc:creator> <dcterms:issued>2019-04</dcterms:issued> <dc:contributor>Yang, Jean</dc:contributor> <dc:creator>Bennett, Max</dc:creator> <dc:creator>de Ridder, Michael</dc:creator> <dc:contributor>Klein, Karsten</dc:contributor> <dc:contributor>de Ridder, Michael</dc:contributor> <dc:contributor>Lagopoulos, Jim</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:41:33Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44695"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:41:33Z</dcterms:available> <dc:creator>Hickie, Ian</dc:creator> <dc:creator>Yang, Pengyi</dc:creator> <dc:contributor>Kim, Jinman</dc:contributor> <dc:creator>Klein, Karsten</dc:creator> <dc:creator>Yang, Jean</dc:creator> <dc:contributor>Bennett, Max</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>