A hormone-based controller for evolutionary multi-modular robotics : From single modules to gait learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For any embodied, mobile, autonomous agent it is essential to control its actuators appropriately for the faced task. This holds for natural organisms as well as for robots. If several such agents have to cooperate, the coordination of actions becomes important. We present an artificial homeostatic hormone system which is a bio-inspired control paradigm. It allows to control both, a single robot as well a set of cooperating modules in multi-modular reconfigurable robotics. Our approach is inspired by chemical signal-processing and hormone control in animals. Evolutionary computation is used to adapt controllers for two distinct morphological robot configurations (uni-and multi-modular), different environmental conditions, and tasks. This approach is compared to artificial neural networks. Our results indicate, that the proposed control paradigm is well adaptable to different robot morphologies and to different environmental situations. It is able to generate behaviors for several robotic tasks and outperforms neural networks in terms of evolvability in the tested multi-modular robotic setting tested.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMANN, Heiko, Jurgen STRADNER, Thomas SCHMICKL, Karl CRAILSHEIM, 2010. A hormone-based controller for evolutionary multi-modular robotics : From single modules to gait learning. 2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain, 18. Juli 2010 - 23. Juli 2010. In: IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2010, C-7784. ISSN 1089-778X. eISSN 1941-0026. ISBN 978-1-4244-6911-6. Available under: doi: 10.1109/CEC.2010.5585994BibTex
@inproceedings{Hamann2010hormo-59958, year={2010}, doi={10.1109/CEC.2010.5585994}, title={A hormone-based controller for evolutionary multi-modular robotics : From single modules to gait learning}, isbn={978-1-4244-6911-6}, issn={1089-778X}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={IEEE Congress on Evolutionary Computation}, author={Hamann, Heiko and Stradner, Jurgen and Schmickl, Thomas and Crailsheim, Karl}, note={Article Number: C-7784} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59958"> <dcterms:title>A hormone-based controller for evolutionary multi-modular robotics : From single modules to gait learning</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Crailsheim, Karl</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-26T15:33:27Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-26T15:33:27Z</dc:date> <dcterms:abstract xml:lang="eng">For any embodied, mobile, autonomous agent it is essential to control its actuators appropriately for the faced task. This holds for natural organisms as well as for robots. If several such agents have to cooperate, the coordination of actions becomes important. We present an artificial homeostatic hormone system which is a bio-inspired control paradigm. It allows to control both, a single robot as well a set of cooperating modules in multi-modular reconfigurable robotics. Our approach is inspired by chemical signal-processing and hormone control in animals. Evolutionary computation is used to adapt controllers for two distinct morphological robot configurations (uni-and multi-modular), different environmental conditions, and tasks. This approach is compared to artificial neural networks. Our results indicate, that the proposed control paradigm is well adaptable to different robot morphologies and to different environmental situations. It is able to generate behaviors for several robotic tasks and outperforms neural networks in terms of evolvability in the tested multi-modular robotic setting tested.</dcterms:abstract> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:creator>Schmickl, Thomas</dc:creator> <dc:contributor>Stradner, Jurgen</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Stradner, Jurgen</dc:creator> <dc:contributor>Schmickl, Thomas</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59958"/> <dcterms:issued>2010</dcterms:issued> <dc:creator>Hamann, Heiko</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Crailsheim, Karl</dc:creator> </rdf:Description> </rdf:RDF>