Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycolfermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEGcontaining nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHINK, Bernhard, Marion STIEB, 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. In: Applied and Environmental Microbiology. 1983, 45(6), pp. 1905-1913. ISSN 0003-6919. eISSN 1098-5336BibTex
@article{Schink1983Ferme-8364, year={1983}, title={Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov}, number={6}, volume={45}, issn={0003-6919}, journal={Applied and Environmental Microbiology}, pages={1905--1913}, author={Schink, Bernhard and Stieb, Marion} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8364"> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:title>Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov</dcterms:title> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8364/1/Fermentative_Degradation_of_Polyethylene_Glycol_by_a_Strictly_1983.pdf"/> <dcterms:bibliographicCitation>First publ. in: Applied and Environmental Microbiology 45 (1983), 6, pp. 1905-1913</dcterms:bibliographicCitation> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycolfermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEGcontaining nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>1983</dcterms:issued> <dc:contributor>Schink, Bernhard</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:42:59Z</dcterms:available> <dc:creator>Stieb, Marion</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8364"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:42:59Z</dc:date> <dc:creator>Schink, Bernhard</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8364/1/Fermentative_Degradation_of_Polyethylene_Glycol_by_a_Strictly_1983.pdf"/> <dc:contributor>Stieb, Marion</dc:contributor> </rdf:Description> </rdf:RDF>