Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Thermal soaring, a technique used by birds and gliders to utilize updrafts of hot air, is an appealing model-problem for studying motion control and how it is learned by animals and engineered autonomous systems. Thermal soaring has rich dynamics and nontrivial constraints, yet it uses few control parameters and is becoming experimentally accessible. Following recent developments in applying reinforcement learning methods for training deep neural-network (deep-RL) models to soar autonomously both in simulation and real gliders, here we develop a simulation-based deep-RL system to study the learning process of thermal soaring. We find that this process has learning bottlenecks, we define a new efficiency metric and use it to characterize learning robustness, we compare the learned policy to data from soaring vultures, and find that the neurons of the trained network divide into function clusters that evolve during learning. These results pose thermal soaring as a rich yet tractable model-problem for the learning of motion control.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FLATO, Yoav, Roi HAREL, Aviv TAMAR, Ran NATHAN, Tsevi BEATUS, 2024. Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning. In: Nature Communications. Springer. 2024, 15, 4942. eISSN 2041-1723. Verfügbar unter: doi: 10.1038/s41467-024-48670-xBibTex
@article{Flato2024-06-10Revea-70279, year={2024}, doi={10.1038/s41467-024-48670-x}, title={Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning}, volume={15}, journal={Nature Communications}, author={Flato, Yoav and Harel, Roi and Tamar, Aviv and Nathan, Ran and Beatus, Tsevi}, note={Article Number: 4942} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70279"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>Thermal soaring, a technique used by birds and gliders to utilize updrafts of hot air, is an appealing model-problem for studying motion control and how it is learned by animals and engineered autonomous systems. Thermal soaring has rich dynamics and nontrivial constraints, yet it uses few control parameters and is becoming experimentally accessible. Following recent developments in applying reinforcement learning methods for training deep neural-network (deep-RL) models to soar autonomously both in simulation and real gliders, here we develop a simulation-based deep-RL system to study the learning process of thermal soaring. We find that this process has learning bottlenecks, we define a new efficiency metric and use it to characterize learning robustness, we compare the learned policy to data from soaring vultures, and find that the neurons of the trained network divide into function clusters that evolve during learning. These results pose thermal soaring as a rich yet tractable model-problem for the learning of motion control.</dcterms:abstract> <dc:creator>Beatus, Tsevi</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Harel, Roi</dc:creator> <dc:contributor>Beatus, Tsevi</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70279/1/Flato_2-1b3gogojjl8x3.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-28T10:56:55Z</dc:date> <dc:contributor>Flato, Yoav</dc:contributor> <dc:creator>Flato, Yoav</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70279"/> <dc:creator>Nathan, Ran</dc:creator> <dc:contributor>Nathan, Ran</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-28T10:56:55Z</dcterms:available> <dc:contributor>Tamar, Aviv</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2024-06-10</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Tamar, Aviv</dc:creator> <dc:contributor>Harel, Roi</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70279/1/Flato_2-1b3gogojjl8x3.pdf"/> </rdf:Description> </rdf:RDF>