Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning

Lade...
Vorschaubild
Dateien
Flato_2-1b3gogojjl8x3.pdf
Flato_2-1b3gogojjl8x3.pdfGröße: 4.94 MBDownloads: 15
Datum
2024
Autor:innen
Flato, Yoav
Tamar, Aviv
Nathan, Ran
Beatus, Tsevi
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nature Communications. Springer. 2024, 15, 4942. eISSN 2041-1723. Verfügbar unter: doi: 10.1038/s41467-024-48670-x
Zusammenfassung

Thermal soaring, a technique used by birds and gliders to utilize updrafts of hot air, is an appealing model-problem for studying motion control and how it is learned by animals and engineered autonomous systems. Thermal soaring has rich dynamics and nontrivial constraints, yet it uses few control parameters and is becoming experimentally accessible. Following recent developments in applying reinforcement learning methods for training deep neural-network (deep-RL) models to soar autonomously both in simulation and real gliders, here we develop a simulation-based deep-RL system to study the learning process of thermal soaring. We find that this process has learning bottlenecks, we define a new efficiency metric and use it to characterize learning robustness, we compare the learned policy to data from soaring vultures, and find that the neurons of the trained network divide into function clusters that evolve during learning. These results pose thermal soaring as a rich yet tractable model-problem for the learning of motion control.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FLATO, Yoav, Roi HAREL, Aviv TAMAR, Ran NATHAN, Tsevi BEATUS, 2024. Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning. In: Nature Communications. Springer. 2024, 15, 4942. eISSN 2041-1723. Verfügbar unter: doi: 10.1038/s41467-024-48670-x
BibTex
@article{Flato2024-06-10Revea-70279,
  year={2024},
  doi={10.1038/s41467-024-48670-x},
  title={Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning},
  volume={15},
  journal={Nature Communications},
  author={Flato, Yoav and Harel, Roi and Tamar, Aviv and Nathan, Ran and Beatus, Tsevi},
  note={Article Number: 4942}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70279">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract>Thermal soaring, a technique used by birds and gliders to utilize updrafts of hot air, is an appealing model-problem for studying motion control and how it is learned by animals and engineered autonomous systems. Thermal soaring has rich dynamics and nontrivial constraints, yet it uses few control parameters and is becoming experimentally accessible. Following recent developments in applying reinforcement learning methods for training deep neural-network (deep-RL) models to soar autonomously both in simulation and real gliders, here we develop a simulation-based deep-RL system to study the learning process of thermal soaring. We find that this process has learning bottlenecks, we define a new efficiency metric and use it to characterize learning robustness, we compare the learned policy to data from soaring vultures, and find that the neurons of the trained network divide into function clusters that evolve during learning. These results pose thermal soaring as a rich yet tractable model-problem for the learning of motion control.</dcterms:abstract>
    <dc:creator>Beatus, Tsevi</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Harel, Roi</dc:creator>
    <dc:contributor>Beatus, Tsevi</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Revealing principles of autonomous thermal soaring in windy conditions using vulture-inspired deep reinforcement-learning</dcterms:title>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70279/1/Flato_2-1b3gogojjl8x3.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-28T10:56:55Z</dc:date>
    <dc:contributor>Flato, Yoav</dc:contributor>
    <dc:creator>Flato, Yoav</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70279"/>
    <dc:creator>Nathan, Ran</dc:creator>
    <dc:contributor>Nathan, Ran</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-28T10:56:55Z</dcterms:available>
    <dc:contributor>Tamar, Aviv</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2024-06-10</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Tamar, Aviv</dc:creator>
    <dc:contributor>Harel, Roi</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70279/1/Flato_2-1b3gogojjl8x3.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen