Publikation:

A visual analytics approach for peak-preserving prediction of large seasonal time series

Lade...
Vorschaubild

Dateien

Hao_Visual analytics.pdf
Hao_Visual analytics.pdfGröße: 5.02 MBDownloads: 986

Datum

2011

Autor:innen

Hao, Ming C.
Hill, Water
Dayal, Umeshwar
Marwah, Manish
Sharma, Ratnesh K.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2011, 30(3), pp. 691-700. ISSN 0167-7055. Available under: doi: 10.1111/j.1467-8659.2011.01918.x

Zusammenfassung

Time series prediction methods are used on a daily basis by analysts for making important decisions. Most of these methods use some variant of moving averages to reduce the number of data points before prediction. However, to reach a good prediction in certain applications (e.g., power consumption time series in data centers) it is important to preserve peaks and their patterns. In this paper, we introduce automated peak-preserving smoothing and prediction algorithms, enabling a reliable long term prediction for seasonal data, and combine them with an advanced visual interface: (1) using high resolution cell-based time series to explore seasonal patterns, (2) adding new visual interaction techniques (multi-scaling, slider, and brushing & linking) to incorporate human expert knowledge, and (3) providing both new visual accuracy color indicators for validating the predicted results and certainty bands communicating the uncertainty of the prediction. We have integrated these techniques into a well-fitted solution to support the prediction process, and applied and evaluated the approach to predict both power consumption and server utilization in data centers with 70–80% accuracy.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Picture/image generation, display algorithms, information interfaces and presentation, general

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming C., Halldor JANETZKO, Sebastian MITTELSTÄDT, Water HILL, Umeshwar DAYAL, Daniel A. KEIM, Manish MARWAH, Ratnesh K. SHARMA, 2011. A visual analytics approach for peak-preserving prediction of large seasonal time series. In: Computer Graphics Forum. 2011, 30(3), pp. 691-700. ISSN 0167-7055. Available under: doi: 10.1111/j.1467-8659.2011.01918.x
BibTex
@article{Hao2011visua-18732,
  year={2011},
  doi={10.1111/j.1467-8659.2011.01918.x},
  title={A visual analytics approach for peak-preserving prediction of large seasonal time series},
  number={3},
  volume={30},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={691--700},
  author={Hao, Ming C. and Janetzko, Halldor and Mittelstädt, Sebastian and Hill, Water and Dayal, Umeshwar and Keim, Daniel A. and Marwah, Manish and Sharma, Ratnesh K.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18732">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18732/2/Hao_Visual%20analytics.pdf"/>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:creator>Marwah, Manish</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18732"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18732/2/Hao_Visual%20analytics.pdf"/>
    <dcterms:abstract xml:lang="eng">Time series prediction methods are used on a daily basis by analysts for making important decisions. Most of these methods use some variant of moving averages to reduce the number of data points before prediction. However, to reach a good prediction in certain applications (e.g., power consumption time series in data centers) it is important to preserve peaks and their patterns. In this paper, we introduce automated peak-preserving smoothing and prediction algorithms, enabling a reliable long term prediction for seasonal data, and combine them with an advanced visual interface: (1) using high resolution cell-based time series to explore seasonal patterns, (2) adding new visual interaction techniques (multi-scaling, slider, and brushing &amp; linking) to incorporate human expert knowledge, and (3) providing both new visual accuracy color indicators for validating the predicted results and certainty bands communicating the uncertainty of the prediction. We have integrated these techniques into a well-fitted solution to support the prediction process, and applied and evaluated the approach to predict both power consumption and server utilization in data centers with 70–80% accuracy.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T20:08:30Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Computer Graphics Forum ; 30 (2011), 3. - pp. 691-700</dcterms:bibliographicCitation>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:title>A visual analytics approach for peak-preserving prediction of large seasonal time series</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Hill, Water</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Hill, Water</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T20:08:30Z</dcterms:available>
    <dcterms:issued>2011</dcterms:issued>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sharma, Ratnesh K.</dc:contributor>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Marwah, Manish</dc:contributor>
    <dc:creator>Sharma, Ratnesh K.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen