Publikation: A visual analytics approach for peak-preserving prediction of large seasonal time series
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Time series prediction methods are used on a daily basis by analysts for making important decisions. Most of these methods use some variant of moving averages to reduce the number of data points before prediction. However, to reach a good prediction in certain applications (e.g., power consumption time series in data centers) it is important to preserve peaks and their patterns. In this paper, we introduce automated peak-preserving smoothing and prediction algorithms, enabling a reliable long term prediction for seasonal data, and combine them with an advanced visual interface: (1) using high resolution cell-based time series to explore seasonal patterns, (2) adding new visual interaction techniques (multi-scaling, slider, and brushing & linking) to incorporate human expert knowledge, and (3) providing both new visual accuracy color indicators for validating the predicted results and certainty bands communicating the uncertainty of the prediction. We have integrated these techniques into a well-fitted solution to support the prediction process, and applied and evaluated the approach to predict both power consumption and server utilization in data centers with 70–80% accuracy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Halldor JANETZKO, Sebastian MITTELSTÄDT, Water HILL, Umeshwar DAYAL, Daniel A. KEIM, Manish MARWAH, Ratnesh K. SHARMA, 2011. A visual analytics approach for peak-preserving prediction of large seasonal time series. In: Computer Graphics Forum. 2011, 30(3), pp. 691-700. ISSN 0167-7055. Available under: doi: 10.1111/j.1467-8659.2011.01918.xBibTex
@article{Hao2011visua-18732, year={2011}, doi={10.1111/j.1467-8659.2011.01918.x}, title={A visual analytics approach for peak-preserving prediction of large seasonal time series}, number={3}, volume={30}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={691--700}, author={Hao, Ming C. and Janetzko, Halldor and Mittelstädt, Sebastian and Hill, Water and Dayal, Umeshwar and Keim, Daniel A. and Marwah, Manish and Sharma, Ratnesh K.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18732"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18732/2/Hao_Visual%20analytics.pdf"/> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:creator>Marwah, Manish</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18732"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18732/2/Hao_Visual%20analytics.pdf"/> <dcterms:abstract xml:lang="eng">Time series prediction methods are used on a daily basis by analysts for making important decisions. Most of these methods use some variant of moving averages to reduce the number of data points before prediction. However, to reach a good prediction in certain applications (e.g., power consumption time series in data centers) it is important to preserve peaks and their patterns. In this paper, we introduce automated peak-preserving smoothing and prediction algorithms, enabling a reliable long term prediction for seasonal data, and combine them with an advanced visual interface: (1) using high resolution cell-based time series to explore seasonal patterns, (2) adding new visual interaction techniques (multi-scaling, slider, and brushing & linking) to incorporate human expert knowledge, and (3) providing both new visual accuracy color indicators for validating the predicted results and certainty bands communicating the uncertainty of the prediction. We have integrated these techniques into a well-fitted solution to support the prediction process, and applied and evaluated the approach to predict both power consumption and server utilization in data centers with 70–80% accuracy.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T20:08:30Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Computer Graphics Forum ; 30 (2011), 3. - pp. 691-700</dcterms:bibliographicCitation> <dc:creator>Janetzko, Halldor</dc:creator> <dc:creator>Dayal, Umeshwar</dc:creator> <dcterms:title>A visual analytics approach for peak-preserving prediction of large seasonal time series</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:creator>Hill, Water</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:creator>Hao, Ming C.</dc:creator> <dc:contributor>Hill, Water</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T20:08:30Z</dcterms:available> <dcterms:issued>2011</dcterms:issued> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Sharma, Ratnesh K.</dc:contributor> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Marwah, Manish</dc:contributor> <dc:creator>Sharma, Ratnesh K.</dc:creator> </rdf:Description> </rdf:RDF>