Publikation:

Unified representation of molecules and crystals for machine learning

Lade...
Vorschaubild

Dateien

Huo_2-19w1s7csvosh5.pdf
Huo_2-19w1s7csvosh5.pdfGröße: 780.17 KBDownloads: 332

Datum

2022

Autor:innen

Huo, Haoyan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 676580

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045017. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/aca005

Zusammenfassung

Accurate simulations of atomistic systems from first principles are limited by computational cost. In high-throughput settings, machine learning can reduce these costs significantly by accurately interpolating between reference calculations. For this, kernel learning approaches crucially require a representation that accommodates arbitrary atomistic systems. We introduce a many-body tensor representation that is invariant to translations, rotations, and nuclear permutations of same elements, unique, differentiable, can represent molecules and crystals, and is fast to compute. Empirical evidence for competitive energy and force prediction errors is presented for changes in molecular structure, crystal chemistry, and molecular dynamics using kernel regression and symmetric gradient-domain machine learning as models. Applicability is demonstrated for phase diagrams of Pt-group/transition-metal binary systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

many-body tensor representation, machine-learning potential, atomistic simulations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUO, Haoyan, Matthias RUPP, 2022. Unified representation of molecules and crystals for machine learning. In: Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045017. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/aca005
BibTex
@article{Huo2022Unifi-59261,
  year={2022},
  doi={10.1088/2632-2153/aca005},
  title={Unified representation of molecules and crystals for machine learning},
  number={4},
  volume={3},
  journal={Machine Learning: Science and Technology},
  author={Huo, Haoyan and Rupp, Matthias},
  note={Article Number: 045017}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59261">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Huo, Haoyan</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59261/3/Huo_2-19w1s7csvosh5.pdf"/>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:title>Unified representation of molecules and crystals for machine learning</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59261/3/Huo_2-19w1s7csvosh5.pdf"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-23T13:19:16Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-23T13:19:16Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Accurate simulations of atomistic systems from first principles are limited by computational cost. In high-throughput settings, machine learning can reduce these costs significantly by accurately interpolating between reference calculations. For this, kernel learning approaches crucially require a representation that accommodates arbitrary atomistic systems. We introduce a many-body tensor representation that is invariant to translations, rotations, and nuclear permutations of same elements, unique, differentiable, can represent molecules and crystals, and is fast to compute. Empirical evidence for competitive energy and force prediction errors is presented for changes in molecular structure, crystal chemistry, and molecular dynamics using kernel regression and symmetric gradient-domain machine learning as models. Applicability is demonstrated for phase diagrams of Pt-group/transition-metal binary systems.</dcterms:abstract>
    <dc:contributor>Huo, Haoyan</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59261"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen