Unified representation of molecules and crystals for machine learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Accurate simulations of atomistic systems from first principles are limited by computational cost. In high-throughput settings, machine learning can reduce these costs significantly by accurately interpolating between reference calculations. For this, kernel learning approaches crucially require a representation that accommodates arbitrary atomistic systems. We introduce a many-body tensor representation that is invariant to translations, rotations, and nuclear permutations of same elements, unique, differentiable, can represent molecules and crystals, and is fast to compute. Empirical evidence for competitive energy and force prediction errors is presented for changes in molecular structure, crystal chemistry, and molecular dynamics using kernel regression and symmetric gradient-domain machine learning as models. Applicability is demonstrated for phase diagrams of Pt-group/transition-metal binary systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HUO, Haoyan, Matthias RUPP, 2022. Unified representation of molecules and crystals for machine learning. In: Machine Learning: Science and Technology. IOP Publishing. 2022, 3(4), 045017. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/aca005BibTex
@article{Huo2022Unifi-59261, year={2022}, doi={10.1088/2632-2153/aca005}, title={Unified representation of molecules and crystals for machine learning}, number={4}, volume={3}, journal={Machine Learning: Science and Technology}, author={Huo, Haoyan and Rupp, Matthias}, note={Article Number: 045017} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59261"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Rupp, Matthias</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Huo, Haoyan</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59261/3/Huo_2-19w1s7csvosh5.pdf"/> <dcterms:issued>2022</dcterms:issued> <dcterms:title>Unified representation of molecules and crystals for machine learning</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59261/3/Huo_2-19w1s7csvosh5.pdf"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-23T13:19:16Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-23T13:19:16Z</dcterms:available> <dcterms:abstract xml:lang="eng">Accurate simulations of atomistic systems from first principles are limited by computational cost. In high-throughput settings, machine learning can reduce these costs significantly by accurately interpolating between reference calculations. For this, kernel learning approaches crucially require a representation that accommodates arbitrary atomistic systems. We introduce a many-body tensor representation that is invariant to translations, rotations, and nuclear permutations of same elements, unique, differentiable, can represent molecules and crystals, and is fast to compute. Empirical evidence for competitive energy and force prediction errors is presented for changes in molecular structure, crystal chemistry, and molecular dynamics using kernel regression and symmetric gradient-domain machine learning as models. Applicability is demonstrated for phase diagrams of Pt-group/transition-metal binary systems.</dcterms:abstract> <dc:contributor>Huo, Haoyan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59261"/> </rdf:Description> </rdf:RDF>