Clustering with Temporal Constraints on Spatio-Temporal Data of Human Mobility
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Extracting significant places or places of interest (POIs) using individuals’ spatio-temporal data is of fundamental importance for human mobility analysis. Classical clustering methods have been used in prior work for detecting POIs, but without considering temporal constraints. Usually, the involved parameters for clustering are difficult to determine, e.g., the optimal cluster number in hierarchical clustering. Currently, researchers either choose heuristic values or use spatial distance-based optimization to determine an appropriate parameter set. We argue that existing research does not optimally address temporal information and thus leaves much room for improvement. Considering temporal constraints in human mobility, we introduce an effective clustering approach – namely POI clustering with temporal constraints (PC-TC) – to extract POIs from spatio-temporal data of human mobility. Following human mobility nature in modern society, our approach aims to extract both global POIs (e.g., workplace or university) and local POIs (e.g., library, lab, and canteen). Based on two publicly available datasets including 193 individuals, our evaluation results show that PC-TC has much potential for next place prediction in terms of granularity (i.e., the number of extracted POIs) and predictability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANG, Yunlong, Björn SOMMER, Falk SCHREIBER, Harald REITERER, 2018. Clustering with Temporal Constraints on Spatio-Temporal Data of Human MobilityBibTex
@unpublished{Wang2018Clust-44909, year={2018}, title={Clustering with Temporal Constraints on Spatio-Temporal Data of Human Mobility}, author={Wang, Yunlong and Sommer, Björn and Schreiber, Falk and Reiterer, Harald} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44909"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T12:19:44Z</dc:date> <dc:creator>Schreiber, Falk</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T12:19:44Z</dcterms:available> <dc:creator>Reiterer, Harald</dc:creator> <dc:contributor>Reiterer, Harald</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44909"/> <dcterms:abstract xml:lang="eng">Extracting significant places or places of interest (POIs) using individuals’ spatio-temporal data is of fundamental importance for human mobility analysis. Classical clustering methods have been used in prior work for detecting POIs, but without considering temporal constraints. Usually, the involved parameters for clustering are difficult to determine, e.g., the optimal cluster number in hierarchical clustering. Currently, researchers either choose heuristic values or use spatial distance-based optimization to determine an appropriate parameter set. We argue that existing research does not optimally address temporal information and thus leaves much room for improvement. Considering temporal constraints in human mobility, we introduce an effective clustering approach – namely POI clustering with temporal constraints (PC-TC) – to extract POIs from spatio-temporal data of human mobility. Following human mobility nature in modern society, our approach aims to extract both global POIs (e.g., workplace or university) and local POIs (e.g., library, lab, and canteen). Based on two publicly available datasets including 193 individuals, our evaluation results show that PC-TC has much potential for next place prediction in terms of granularity (i.e., the number of extracted POIs) and predictability.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44909/1/Wang_2-18vp27uu354u2.pdf"/> <dc:contributor>Sommer, Björn</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wang, Yunlong</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2018</dcterms:issued> <dcterms:title>Clustering with Temporal Constraints on Spatio-Temporal Data of Human Mobility</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Sommer, Björn</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44909/1/Wang_2-18vp27uu354u2.pdf"/> <dc:contributor>Wang, Yunlong</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schreiber, Falk</dc:contributor> </rdf:Description> </rdf:RDF>