Publikation: A Novel Approach to Mining Travel Sequences Using Collections of Geotagged Photos
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we present a novel approach for analyzing the trajectories of moving objects and of people in particular. The minded data from these sequences can provide valuable information for understanding the surrounding locations, discovering attractive place or mining frequent sequences of visited places. Based on geotagged photos, our framework
mines semantically annotated sequences. Our framework is capable of mining semantically annotated sequences of any length to discover patterns that are not necessarily immediate antecedents. The approach consists of four main steps. In the first step, every photo location is semantically annotated by assigning it to a known nearby point of interest. In the
second step, a density-based clustering algorithm is applied to all unassigned photos, creating regions of unknown points of interest. In the third step, a travel sequence of every individual is built. In the final step, travel sequence patterns are mined using the semantics that were obtained from the first two steps. Case studies of Guimarães, Portugal (where the conference takes place) and Berlin, Germany demonstrate the capabilities of the proposed framework.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KISILEVICH, Slava, Daniel A. KEIM, Lior ROKACH, 2010. A Novel Approach to Mining Travel Sequences Using Collections of Geotagged Photos. In: PAINHO, Marco, ed., Maribel Yasmina SANTOS, ed., Hardy PUNDT, ed.. Geospatial Thinking. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 163-182. Lecture Notes in Geoinformation and Cartography. 0. ISBN 978-3-642-12325-2. Available under: doi: 10.1007/978-3-642-12326-9_9BibTex
@inproceedings{Kisilevich2010-03-31Novel-6012, year={2010}, doi={10.1007/978-3-642-12326-9_9}, title={A Novel Approach to Mining Travel Sequences Using Collections of Geotagged Photos}, number={0}, isbn={978-3-642-12325-2}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Geoinformation and Cartography}, booktitle={Geospatial Thinking}, pages={163--182}, editor={Painho, Marco and Santos, Maribel Yasmina and Pundt, Hardy}, author={Kisilevich, Slava and Keim, Daniel A. and Rokach, Lior} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6012"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2010-03-31</dcterms:issued> <dcterms:abstract xml:lang="eng">In this paper we present a novel approach for analyzing the trajectories of moving objects and of people in particular. The minded data from these sequences can provide valuable information for understanding the surrounding locations, discovering attractive place or mining frequent sequences of visited places. Based on geotagged photos, our framework<br /><br />mines semantically annotated sequences. Our framework is capable of mining semantically annotated sequences of any length to discover patterns that are not necessarily immediate antecedents. The approach consists of four main steps. In the first step, every photo location is semantically annotated by assigning it to a known nearby point of interest. In the<br /><br />second step, a density-based clustering algorithm is applied to all unassigned photos, creating regions of unknown points of interest. In the third step, a travel sequence of every individual is built. In the final step, travel sequence patterns are mined using the semantics that were obtained from the first two steps. Case studies of Guimarães, Portugal (where the conference takes place) and Berlin, Germany demonstrate the capabilities of the proposed framework.</dcterms:abstract> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:44Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Also publ. in: Geospatial thinking / Marco Painho ... (Eds.). - Berlin; Heidelberg : Springer, 2010. - pp. 163-182. - ISBN 978-3-642-12325-2</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6012/1/12453.6.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T23:25:04Z</dcterms:available> <dc:creator>Kisilevich, Slava</dc:creator> <dc:creator>Rokach, Lior</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:format>application/pdf</dc:format> <dc:language>eng</dc:language> <dc:contributor>Rokach, Lior</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6012/1/12453.6.pdf"/> <dcterms:title>A Novel Approach to Mining Travel Sequences Using Collections of Geotagged Photos</dcterms:title> <dc:contributor>Kisilevich, Slava</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6012"/> </rdf:Description> </rdf:RDF>