Edge-Disjoint Paths in Planar Graphs with Short Total Length

Lade...
Vorschaubild
Dateien
preprint_019.pdf
preprint_019.pdfGröße: 308.53 KBDownloads: 167
Datum
1996
Autor:innen
Neyer, Gabriele
Wagner, Dorothea
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The problem of finding edge-disjoint paths in a planar graph such that each path connects two specified vertices on the outer face of the graph is well studied. The "classical" Eulerian case introduced by Okamura and Seymour is solvable in linear time by an Algorithm introduced by Wagner and Weihe. So far, the length of the paths were not considered. In this paper now, we prove that the problem of finding edge-disjoint paths of minimum total length in a planar graph is NP-hard, even if the graph fullfills the Eulerian condition and the maximum degree is four. Minimizing the length of the longest path is NP-hard as well. Efficient heuristics based on the algorithm by Wagner and Weihe are presented that determine edge-disjoint paths of small total length. We have implemented these heuristics and have studied their behaviour. It turns out that some of the heuristics are empirically very successful.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BRANDES, Ulrik, Gabriele NEYER, Dorothea WAGNER, 1996. Edge-Disjoint Paths in Planar Graphs with Short Total Length
BibTex
@unpublished{Brandes1996EdgeD-5975,
  year={1996},
  title={Edge-Disjoint Paths in Planar Graphs with Short Total Length},
  author={Brandes, Ulrik and Neyer, Gabriele and Wagner, Dorothea}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5975">
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>Neyer, Gabriele</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Neyer, Gabriele</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5975/1/preprint_019.pdf"/>
    <dc:creator>Wagner, Dorothea</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:30Z</dcterms:available>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Wagner, Dorothea</dc:contributor>
    <dcterms:issued>1996</dcterms:issued>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:abstract xml:lang="eng">The problem of finding edge-disjoint paths in a planar graph such that each path connects two specified vertices on the outer face of the graph is well studied. The "classical" Eulerian case introduced by Okamura and Seymour is solvable in linear time by an Algorithm introduced by Wagner and Weihe. So far, the length of the paths were not considered. In this paper now, we prove that the problem of finding edge-disjoint paths of minimum total length in a planar graph is NP-hard, even if the graph fullfills the Eulerian condition and the maximum degree is four. Minimizing the length of the longest path is NP-hard as well. Efficient heuristics based on the algorithm by Wagner and Weihe are presented that determine edge-disjoint paths of small total length. We have implemented these heuristics and have studied their behaviour. It turns out that some of the heuristics are empirically very successful.</dcterms:abstract>
    <dcterms:title>Edge-Disjoint Paths in Planar Graphs with Short Total Length</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:30Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5975/1/preprint_019.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5975"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen