Publikation:

Time synchronisation for millisecond-precision on bio-loggers

Lade...
Vorschaubild

Dateien

Wild_2-14rjztx83md89.PDF
Wild_2-14rjztx83md89.PDFGröße: 2.7 MBDownloads: 3

Datum

2024

Autor:innen

Wild, Timm A.
Wilbs, Georg
Mattingly, Sierra
Sfenthourakis, Spyros
Nicolaou, Haris
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Movement Ecology. Springer. 2024, 12, 71. eISSN 2051-3933. Verfügbar unter: doi: 10.1186/s40462-024-00512-7

Zusammenfassung

Time-synchronised data streams from bio-loggers are becoming increasingly important for analysing and interpreting intricate animal behaviour including split-second decision making, group dynamics, and collective responses to environmental conditions. With the increased use of AI-based approaches for behaviour classification, time synchronisation between recording systems is becoming an essential challenge. Current solutions in bio-logging rely on manually removing time errors during post processing, which is complex and typically does not achieve sub-second timing accuracies.

We first introduce an error model to quantify time errors, then optimise three wireless methods for automated onboard time (re)synchronisation on bio-loggers (GPS, WiFi, proximity messages). The methods can be combined as required and, when coupled with a state-of-the-art real time clock, facilitate accurate time annotations for all types of bio-logging data without need for post processing. We analyse time accuracy of our optimised methods in stationary tests and in a case study on 99 Egyptian fruit bats (Rousettus aegyptiacus). Based on the results, we offer recommendations for projects that require high time synchrony.

During stationary tests, our low power synchronisation methods achieved median time accuracies of 2.72 / 0.43 ms (GPS / WiFi), compared to UTC time, and relative median time accuracies of 5 ms between tags (wireless proximity messages). In our case study with bats, we achieved a median relative time accuracy of 40 ms between tags throughout the entire 10-day duration of tag deployment. Using only one automated resynchronisation per day, permanent UTC time accuracies of ≤ 185 ms can be guaranteed in 95% of cases over a wide temperature range between 0 and 50 °C. Accurate timekeeping required a minimal battery capacity, operating in the nano- to microwatt range.

Time measurements on bio-loggers, similar to other forms of sensor-derived data, are prone to errors and so far received little scientific attention. Our combinable methods offer a means to quantify time errors and autonomously correct them at the source (i.e., on bio-loggers). This approach facilitates sub-second comparisons of simultaneously recorded time series data across multiple individuals and off-animal devices such as cameras or weather stations. Through automated resynchronisations on bio-loggers, long-term sub-second accurate timestamps become feasible, even for life-time studies on animals. We contend that our methods have potential to greatly enhance the quality of ecological data, thereby improving scientific conclusions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Animal tracking, Movement ecology, Telemetry, Wireless sensors, Embedded systems, WiFi, GPS, Real time, Proximity, Internet of animals, IoT

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WILD, Timm A., Georg WILBS, Dina K. N. DECHMANN, Jenna E. KOHLES, Nils Benjamin LINEK, Sierra MATTINGLY, Nina RICHTER, Spyros SFENTHOURAKIS, Haris NICOLAOU, Martin WIKELSKI, 2024. Time synchronisation for millisecond-precision on bio-loggers. In: Movement Ecology. Springer. 2024, 12, 71. eISSN 2051-3933. Verfügbar unter: doi: 10.1186/s40462-024-00512-7
BibTex
@article{Wild2024-10-28synch-71604,
  year={2024},
  doi={10.1186/s40462-024-00512-7},
  title={Time synchronisation for millisecond-precision on bio-loggers},
  volume={12},
  journal={Movement Ecology},
  author={Wild, Timm A. and Wilbs, Georg and Dechmann, Dina K. N. and Kohles, Jenna E. and Linek, Nils Benjamin and Mattingly, Sierra and Richter, Nina and Sfenthourakis, Spyros and Nicolaou, Haris and Wikelski, Martin},
  note={Article Number: 71}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71604">
    <dc:contributor>Dechmann, Dina K. N.</dc:contributor>
    <dc:contributor>Wikelski, Martin</dc:contributor>
    <dc:creator>Linek, Nils Benjamin</dc:creator>
    <dcterms:title>Time synchronisation for millisecond-precision on bio-loggers</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Mattingly, Sierra</dc:creator>
    <dc:creator>Wild, Timm A.</dc:creator>
    <dcterms:abstract>Time-synchronised data streams from bio-loggers are becoming increasingly important for analysing and interpreting intricate animal behaviour including split-second decision making, group dynamics, and collective responses to environmental conditions. With the increased use of AI-based approaches for behaviour classification, time synchronisation between recording systems is becoming an essential challenge. Current solutions in bio-logging rely on manually removing time errors during post processing, which is complex and typically does not achieve sub-second timing accuracies.

We first introduce an error model to quantify time errors, then optimise three wireless methods for automated onboard time (re)synchronisation on bio-loggers (GPS, WiFi, proximity messages). The methods can be combined as required and, when coupled with a state-of-the-art real time clock, facilitate accurate time annotations for all types of bio-logging data without need for post processing. We analyse time accuracy of our optimised methods in stationary tests and in a case study on 99 Egyptian fruit bats (Rousettus aegyptiacus). Based on the results, we offer recommendations for projects that require high time synchrony.

During stationary tests, our low power synchronisation methods achieved median time accuracies of 2.72 / 0.43 ms (GPS / WiFi), compared to UTC time, and relative median time accuracies of 5 ms between tags (wireless proximity messages). In our case study with bats, we achieved a median relative time accuracy of 40 ms between tags throughout the entire 10-day duration of tag deployment. Using only one automated resynchronisation per day, permanent UTC time accuracies of ≤ 185 ms can be guaranteed in 95% of cases over a wide temperature range between 0 and 50 °C. Accurate timekeeping required a minimal battery capacity, operating in the nano- to microwatt range.

Time measurements on bio-loggers, similar to other forms of sensor-derived data, are prone to errors and so far received little scientific attention. Our combinable methods offer a means to quantify time errors and autonomously correct them at the source (i.e., on bio-loggers). This approach facilitates sub-second comparisons of simultaneously recorded time series data across multiple individuals and off-animal devices such as cameras or weather stations. Through automated resynchronisations on bio-loggers, long-term sub-second accurate timestamps become feasible, even for life-time studies on animals. We contend that our methods have potential to greatly enhance the quality of ecological data, thereby improving scientific conclusions.</dcterms:abstract>
    <dc:contributor>Sfenthourakis, Spyros</dc:contributor>
    <dc:creator>Sfenthourakis, Spyros</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71604/1/Wild_2-14rjztx83md89.PDF"/>
    <dc:creator>Richter, Nina</dc:creator>
    <dc:contributor>Wilbs, Georg</dc:contributor>
    <dc:creator>Nicolaou, Haris</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-06T13:07:29Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71604"/>
    <dc:creator>Kohles, Jenna E.</dc:creator>
    <dc:creator>Wikelski, Martin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-06T13:07:29Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71604/1/Wild_2-14rjztx83md89.PDF"/>
    <dc:contributor>Linek, Nils Benjamin</dc:contributor>
    <dc:creator>Wilbs, Georg</dc:creator>
    <dc:contributor>Wild, Timm A.</dc:contributor>
    <dc:contributor>Nicolaou, Haris</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Mattingly, Sierra</dc:contributor>
    <dc:contributor>Richter, Nina</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Dechmann, Dina K. N.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Kohles, Jenna E.</dc:contributor>
    <dcterms:issued>2024-10-28</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen