Publikation:

Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Bogomolov, Sergiy
Henzinger, Thomas A.
Podelski, Andreas
Ruess, Jakob

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ROUX, Olivier, ed., Jérémie BOURDON, ed.. Computational Methods in Systems Biology : 13th International Conference, CMSB 2015, Nantes, France, September 16–18, 2015, proceedings. Cham: Springer, 2015, pp. 77-89. Lecture Notes in Bioinformatics. 9308. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-23400-7. Available under: doi: 10.1007/978-3-319-23401-4_8

Zusammenfassung

Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Stochastic reaction networks, Continuous-time markov chains, Parameter inference, Moment closure

Konferenz

13th International Conference, CMSB 2015, 16. Sept. 2015 - 18. Sept. 2015, Nantes, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BOGOMOLOV, Sergiy, Thomas A. HENZINGER, Andreas PODELSKI, Jakob RUESS, Christian SCHILLING, 2015. Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks. 13th International Conference, CMSB 2015. Nantes, France, 16. Sept. 2015 - 18. Sept. 2015. In: ROUX, Olivier, ed., Jérémie BOURDON, ed.. Computational Methods in Systems Biology : 13th International Conference, CMSB 2015, Nantes, France, September 16–18, 2015, proceedings. Cham: Springer, 2015, pp. 77-89. Lecture Notes in Bioinformatics. 9308. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-23400-7. Available under: doi: 10.1007/978-3-319-23401-4_8
BibTex
@inproceedings{Bogomolov2015Adapt-52461,
  year={2015},
  doi={10.1007/978-3-319-23401-4_8},
  title={Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks},
  number={9308},
  isbn={978-3-319-23400-7},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Bioinformatics},
  booktitle={Computational Methods in Systems Biology : 13th International Conference, CMSB 2015, Nantes, France, September 16–18, 2015, proceedings},
  pages={77--89},
  editor={Roux, Olivier and Bourdon, Jérémie},
  author={Bogomolov, Sergiy and Henzinger, Thomas A. and Podelski, Andreas and Ruess, Jakob and Schilling, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52461">
    <dc:contributor>Bogomolov, Sergiy</dc:contributor>
    <dc:creator>Schilling, Christian</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ruess, Jakob</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schilling, Christian</dc:contributor>
    <dc:contributor>Ruess, Jakob</dc:contributor>
    <dc:creator>Henzinger, Thomas A.</dc:creator>
    <dc:contributor>Podelski, Andreas</dc:contributor>
    <dc:creator>Bogomolov, Sergiy</dc:creator>
    <dcterms:title>Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T10:28:43Z</dcterms:available>
    <dc:creator>Podelski, Andreas</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52461"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Henzinger, Thomas A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T10:28:43Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen