Multilevel techniques for the solution of HJB minimum-time control problems

Lade...
Vorschaubild
Dateien
Ciaramella_2-11gwqah6olyg0.pdf
Ciaramella_2-11gwqah6olyg0.pdfGröße: 1.4 MBDownloads: 288
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Submitted
Wird erscheinen in
Zusammenfassung

The approximation of feedback control via the Dynamic Programming approach is a challenging problem. The computation of the feedback requires the knowledge of the value function, which can be characterized as the unique viscosity solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) equation. The major obstacle is that the numerical methods known in literature strongly suffer when the dimension of the discretized problem becomes large. This is a strong limitation to the application of classical numerical schemes for the solution of the HJB equation in real applications. To tackle this problem, a new multi-level numerical framework is proposed. Numerical evidences show that classical methods have good smoothing properties, which allow one to use them as smoothers in a multilevel strategy. Moreover, a new smoother iterative scheme based on the Anderson acceleration of the classical value function iteration is introduced. The effectiveness of our new framework is proved by several numerical experiments focusing on minimum-time control problems.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Hamilton-Jacobi equation, minimum-time problem, value iteration, policy iteration, Anderson acceleration, multilevel acceleration methods, FAS
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690CIARAMELLA, Gabriele, Giulia FABRINI, 2018. Multilevel techniques for the solution of HJB minimum-time control problems
BibTex
@techreport{Ciaramella2018Multi-44827,
  year={2018},
  title={Multilevel techniques for the solution of HJB minimum-time control problems},
  author={Ciaramella, Gabriele and Fabrini, Giulia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44827">
    <dcterms:title>Multilevel techniques for the solution of HJB minimum-time control problems</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44827/3/Ciaramella_2-11gwqah6olyg0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T14:26:55Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44827/3/Ciaramella_2-11gwqah6olyg0.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-04T14:26:55Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Fabrini, Giulia</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dc:creator>Fabrini, Giulia</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44827"/>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <dcterms:abstract xml:lang="eng">The approximation of feedback control via the Dynamic Programming approach is a challenging problem. The computation of the feedback requires the knowledge of the value function, which can be characterized as the unique viscosity solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) equation. The major obstacle is that the numerical methods known in literature strongly suffer when the dimension of the discretized problem becomes large. This is a strong limitation to the application of classical numerical schemes for the solution of the HJB equation in real applications. To tackle this problem, a new multi-level numerical framework is proposed. Numerical evidences show that classical methods have good smoothing properties, which allow one to use them as smoothers in a multilevel strategy. Moreover, a new smoother iterative scheme based on the Anderson acceleration of the classical value function iteration is introduced. The effectiveness of our new framework is proved by several numerical experiments focusing on minimum-time control problems.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen