Interpretable Topic Modeling Using Near-Identity Cross-Document Coreference Resolution

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York: ACM, 2020, pp. 461-462. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398564
Zusammenfassung

Topic modeling is a technique used in a broad spectrum of use cases, such as data exploration, summarization, and classification. Despite being a crucial constituent of many use cases, established topic models, such as LDA, often produce statistically valid yet non-meaningful topics, i.e., that cannot easily be interpreted by humans. In turn, the usability of topic modeling approaches, e.g., in document summarization, is non-optimal. We propose a topic modeling approach that uses TCA, a method for also near-identity cross-document coreference resolution. TCA showed promising results when resolving mentions of not only persons and other named entities, but also broad, vague, or abstract concepts. In a preliminary evaluation on news articles, we compare the approach with state-of-the-art topic modeling. We find that (1) the four baselines produce statistically valid yet hollow topics or topics that only refer to events in the dataset but not the events' topical composition. (2) TCA is the only approach that extracts topics that distinctively describe meaningful parts of the dataset.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
JCDL '20, 1. Aug. 2020 - 5. Aug. 2020, China (Virtual Event)
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ZHUKOVA, Anastasia, Felix HAMBORG, Bela GIPP, 2020. Interpretable Topic Modeling Using Near-Identity Cross-Document Coreference Resolution. JCDL '20. China (Virtual Event), 1. Aug. 2020 - 5. Aug. 2020. In: HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York: ACM, 2020, pp. 461-462. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398564
BibTex
@inproceedings{Zhukova2020Inter-51922,
  year={2020},
  doi={10.1145/3383583.3398564},
  title={Interpretable Topic Modeling Using Near-Identity Cross-Document Coreference Resolution},
  isbn={978-1-4503-7585-6},
  publisher={ACM},
  address={New York},
  booktitle={Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20)},
  pages={461--462},
  editor={Huang, Ruhua},
  author={Zhukova, Anastasia and Hamborg, Felix and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51922">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:22:35Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Topic modeling is a technique used in a broad spectrum of use cases, such as data exploration, summarization, and classification. Despite being a crucial constituent of many use cases, established topic models, such as LDA, often produce statistically valid yet non-meaningful topics, i.e., that cannot easily be interpreted by humans. In turn, the usability of topic modeling approaches, e.g., in document summarization, is non-optimal. We propose a topic modeling approach that uses TCA, a method for also near-identity cross-document coreference resolution. TCA showed promising results when resolving mentions of not only persons and other named entities, but also broad, vague, or abstract concepts. In a preliminary evaluation on news articles, we compare the approach with state-of-the-art topic modeling. We find that (1) the four baselines produce statistically valid yet hollow topics or topics that only refer to events in the dataset but not the events' topical composition. (2) TCA is the only approach that extracts topics that distinctively describe meaningful parts of the dataset.</dcterms:abstract>
    <dc:creator>Zhukova, Anastasia</dc:creator>
    <dc:contributor>Zhukova, Anastasia</dc:contributor>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51922"/>
    <dcterms:title>Interpretable Topic Modeling Using Near-Identity Cross-Document Coreference Resolution</dcterms:title>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:22:35Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen