Widened Learning of Bayesian Network Classifiers
Lade...
Dateien
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BOSTRĂ–M, Henrik, ed. and others. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016; Proceedings. Cham: Springer, 2016, pp. 215-225. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_19
Zusammenfassung
We demonstrate the application of Widening to learning performant Bayesian Networks for use as classifiers. Widening is a framework for utilizing parallel resources and diversity to find models in a hypothesis space that are potentially better than those of a standard greedy algorithm. This work demonstrates that widened learning of Bayesian Networks, using the Frobenius Norm of the networks’ graph Laplacian matrices as a distance measure, can create Bayesian networks that are better classifiers than those generated by popular Bayesian Network algorithms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
15th International Symposium, IDA 2016, 13. Okt. 2016 - 15. Okt. 2016, Stockholm
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SAMPSON, Oliver R., Michael R. BERTHOLD, 2016. Widened Learning of Bayesian Network Classifiers. 15th International Symposium, IDA 2016. Stockholm, 13. Okt. 2016 - 15. Okt. 2016. In: BOSTRĂ–M, Henrik, ed. and others. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016; Proceedings. Cham: Springer, 2016, pp. 215-225. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_19BibTex
@inproceedings{Sampson2016-09-21Widen-37277, year={2016}, doi={10.1007/978-3-319-46349-0_19}, title={Widened Learning of Bayesian Network Classifiers}, number={9897}, isbn={978-3-319-46348-3}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016; Proceedings}, pages={215--225}, editor={Boström, Henrik}, author={Sampson, Oliver R. and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37277"> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T13:18:50Z</dcterms:available> <dc:contributor>Sampson, Oliver R.</dc:contributor> <dc:creator>Sampson, Oliver R.</dc:creator> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:creator>Berthold, Michael R.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T13:18:50Z</dc:date> <dcterms:issued>2016-09-21</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37277/1/Sampson_0-370131.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37277"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We demonstrate the application of Widening to learning performant Bayesian Networks for use as classifiers. Widening is a framework for utilizing parallel resources and diversity to find models in a hypothesis space that are potentially better than those of a standard greedy algorithm. This work demonstrates that widened learning of Bayesian Networks, using the Frobenius Norm of the networks’ graph Laplacian matrices as a distance measure, can create Bayesian networks that are better classifiers than those generated by popular Bayesian Network algorithms.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37277/1/Sampson_0-370131.pdf"/> <dcterms:title>Widened Learning of Bayesian Network Classifiers</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
PrĂĽfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja