Publikation:

Free Energy Projective Simulation (FEPS) : Active inference with interpretability

Lade...
Vorschaubild

Dateien

Pazem_2-stuq5zxy3zj6.pdf
Pazem_2-stuq5zxy3zj6.pdfGröße: 5.02 MBDownloads: 58

Datum

2025

Autor:innen

Pazem, Joséphine
Krumm, Marius
Fiderer, Lukas J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Austrian Science Fund (FWF): DOI 10.55776/ F71

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLOS One. Public Library of Science (PLoS). 2025, 20(9), e0331047. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0331047

Zusammenfassung

In the last decade, the free energy principle (FEP) and active inference (AIF) have achieved many successes connecting conceptual models of learning and cognition to mathematical models of perception and action. This effort is driven by a multidisciplinary interest in understanding aspects of self-organizing complex adaptive systems, including elements of agency. Various reinforcement learning (RL) models performing active inference have been proposed and trained on standard RL tasks using deep neural networks. Recent work has focused on improving such agents’ performance in complex environments by incorporating the latest machine learning techniques. In this paper, we build upon these techniques. Within the constraints imposed by the FEP and AIF, we attempt to model agents in an interpretable way without deep neural networks by introducing Free Energy Projective Simulation (FEPS). Using internal rewards only, FEPS agents build a representation of their partially observable environments with which they interact. Following AIF, the policy to achieve a given task is derived from this world model by minimizing the expected free energy. Leveraging the interpretability of the model, techniques are introduced to deal with long-term goals and reduce prediction errors caused by erroneous hidden state estimation. We test the FEPS model on two RL environments inspired from behavioral biology: a timed response task and a navigation task in a partially observable grid. Our results show that FEPS agents fully resolve the ambiguity of both environments by appropriately contextualizing their observations based on prediction accuracy only. In addition, they infer optimal policies flexibly for any target observation in the environment.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PAZEM, Joséphine, Marius KRUMM, Alexander Q. VINING, Lukas J. FIDERER, Hans J. BRIEGEL, 2025. Free Energy Projective Simulation (FEPS) : Active inference with interpretability. In: PLOS One. Public Library of Science (PLoS). 2025, 20(9), e0331047. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0331047
BibTex
@article{Pazem2025-09-04Energ-74899,
  title={Free Energy Projective Simulation (FEPS) : Active inference with interpretability},
  year={2025},
  doi={10.1371/journal.pone.0331047},
  number={9},
  volume={20},
  journal={PLOS One},
  author={Pazem, Joséphine and Krumm, Marius and Vining, Alexander Q. and Fiderer, Lukas J. and Briegel, Hans J.},
  note={Article Number: e0331047}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74899">
    <dc:creator>Vining, Alexander Q.</dc:creator>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dcterms:abstract>In the last decade, the free energy principle (FEP) and active inference (AIF) have achieved many successes connecting conceptual models of learning and cognition to mathematical models of perception and action. This effort is driven by a multidisciplinary interest in understanding aspects of self-organizing complex adaptive systems, including elements of agency. Various reinforcement learning (RL) models performing active inference have been proposed and trained on standard RL tasks using deep neural networks. Recent work has focused on improving such agents’ performance in complex environments by incorporating the latest machine learning techniques. In this paper, we build upon these techniques. Within the constraints imposed by the FEP and AIF, we attempt to model agents in an interpretable way without deep neural networks by introducing Free Energy Projective Simulation (FEPS). Using internal rewards only, FEPS agents build a representation of their partially observable environments with which they interact. Following AIF, the policy to achieve a given task is derived from this world model by minimizing the expected free energy. Leveraging the interpretability of the model, techniques are introduced to deal with long-term goals and reduce prediction errors caused by erroneous hidden state estimation. We test the FEPS model on two RL environments inspired from behavioral biology: a timed response task and a navigation task in a partially observable grid. Our results show that FEPS agents fully resolve the ambiguity of both environments by appropriately contextualizing their observations based on prediction accuracy only. In addition, they infer optimal policies flexibly for any target observation in the environment.</dcterms:abstract>
    <dc:contributor>Krumm, Marius</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74899"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dcterms:issued>2025-09-04</dcterms:issued>
    <dc:contributor>Fiderer, Lukas J.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74899/1/Pazem_2-stuq5zxy3zj6.pdf"/>
    <dc:contributor>Vining, Alexander Q.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74899/1/Pazem_2-stuq5zxy3zj6.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-20T10:47:14Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-20T10:47:14Z</dc:date>
    <dc:creator>Krumm, Marius</dc:creator>
    <dcterms:title>Free Energy Projective Simulation (FEPS) : Active inference with interpretability</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Fiderer, Lukas J.</dc:creator>
    <dc:contributor>Pazem, Joséphine</dc:contributor>
    <dc:creator>Pazem, Joséphine</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen