Weakly smooth nonselfadjoint spectral elliptic boundary problems
Weakly smooth nonselfadjoint spectral elliptic boundary problems
Loading...
Files
Date
1997
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Mathematical topics ; 14 (1997). - pp. 138-199
Abstract
The paper is devoted to general elliptic boundary problems (A, B1 , ..., Bm) with a differential operator A of order 2m and general boundary conditions, acting in a bounded domain G of the n-dimensional space. No self-adjointness is assumed. The main goal is to minimize, to some extent, the smoothness assumptions under which the known spectral results are true. The main results concern the asymptotics of the trace of the q-th power of the resolvent, where q>n/2m, in an angle of ellipticity with parameter. For example, for the Dirichlet problem these asymptotics are obtained in the case of bounded and measurable coefficients in A and continuous coefficients in the principal part of A, while the boundary is assumed to belong to the Hölder space C2m-1,1. The asymptotics of the moduli of the eigenvalues are investigated. The last section is devoted to indefinite spectral problems, with a real-valued multiplier changing the sign in front of the spectral parameter.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
AGRANOVIČ, Michail S., Robert DENK, Melvin FAIERMAN, 1997. Weakly smooth nonselfadjoint spectral elliptic boundary problems. In: Mathematical topics. 14, pp. 138-199BibTex
@article{Agranovic1997Weakl-606, year={1997}, title={Weakly smooth nonselfadjoint spectral elliptic boundary problems}, volume={14}, journal={Mathematical topics}, pages={138--199}, author={Agranovič, Michail S. and Denk, Robert and Faierman, Melvin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/606"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/606/1/rd10.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dc:date> <dc:format>application/pdf</dc:format> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: Mathematical topics 14 (1997), pp. 138-199</dcterms:bibliographicCitation> <dc:creator>Denk, Robert</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/606/1/rd10.pdf"/> <dc:creator>Agranovič, Michail S.</dc:creator> <dc:creator>Faierman, Melvin</dc:creator> <dc:contributor>Agranovič, Michail S.</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/606"/> <dcterms:issued>1997</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Faierman, Melvin</dc:contributor> <dcterms:abstract xml:lang="eng">The paper is devoted to general elliptic boundary problems (A, B1 , ..., Bm) with a differential operator A of order 2m and general boundary conditions, acting in a bounded domain G of the n-dimensional space. No self-adjointness is assumed. The main goal is to minimize, to some extent, the smoothness assumptions under which the known spectral results are true. The main results concern the asymptotics of the trace of the q-th power of the resolvent, where q>n/2m, in an angle of ellipticity with parameter. For example, for the Dirichlet problem these asymptotics are obtained in the case of bounded and measurable coefficients in A and continuous coefficients in the principal part of A, while the boundary is assumed to belong to the Hölder space C2m-1,1. The asymptotics of the moduli of the eigenvalues are investigated. The last section is devoted to indefinite spectral problems, with a real-valued multiplier changing the sign in front of the spectral parameter.</dcterms:abstract> <dcterms:title>Weakly smooth nonselfadjoint spectral elliptic boundary problems</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No