The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Fallat, Shaun M.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Discrete Mathematics. 2019, 342(10), pp. 2924-2950. ISSN 0012-365X. eISSN 1872-681X. Available under: doi: 10.1016/j.disc.2019.06.030
Zusammenfassung

Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Graphs, Symmetric matrices, Maximum nullity, Partial inertia, Trees, Unicyclic graph
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ADM, Mohammad, Shaun M. FALLAT, 2019. The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic. In: Discrete Mathematics. 2019, 342(10), pp. 2924-2950. ISSN 0012-365X. eISSN 1872-681X. Available under: doi: 10.1016/j.disc.2019.06.030
BibTex
@article{Adm2019-10maxim-46998,
  year={2019},
  doi={10.1016/j.disc.2019.06.030},
  title={The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic},
  number={10},
  volume={342},
  issn={0012-365X},
  journal={Discrete Mathematics},
  pages={2924--2950},
  author={Adm, Mohammad and Fallat, Shaun M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46998">
    <dc:contributor>Adm, Mohammad</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.</dcterms:abstract>
    <dcterms:title>The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic</dcterms:title>
    <dc:creator>Adm, Mohammad</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Fallat, Shaun M.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46998"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:24:04Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:24:04Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019-10</dcterms:issued>
    <dc:contributor>Fallat, Shaun M.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Nein
Diese Publikation teilen