Publikation:

The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Fallat, Shaun M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Discrete Mathematics. 2019, 342(10), pp. 2924-2950. ISSN 0012-365X. eISSN 1872-681X. Available under: doi: 10.1016/j.disc.2019.06.030

Zusammenfassung

Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Graphs, Symmetric matrices, Maximum nullity, Partial inertia, Trees, Unicyclic graph

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690ADM, Mohammad, Shaun M. FALLAT, 2019. The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic. In: Discrete Mathematics. 2019, 342(10), pp. 2924-2950. ISSN 0012-365X. eISSN 1872-681X. Available under: doi: 10.1016/j.disc.2019.06.030
BibTex
@article{Adm2019-10maxim-46998,
  year={2019},
  doi={10.1016/j.disc.2019.06.030},
  title={The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic},
  number={10},
  volume={342},
  issn={0012-365X},
  journal={Discrete Mathematics},
  pages={2924--2950},
  author={Adm, Mohammad and Fallat, Shaun M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46998">
    <dc:contributor>Adm, Mohammad</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.</dcterms:abstract>
    <dcterms:title>The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic</dcterms:title>
    <dc:creator>Adm, Mohammad</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Fallat, Shaun M.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46998"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:24:04Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:24:04Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019-10</dcterms:issued>
    <dc:contributor>Fallat, Shaun M.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Nein
Diese Publikation teilen