Cavity nano-optomechanics inside a fiber-based micro-cavity

Lade...
Vorschaubild
Dateien
Rochau_2-qhjrmj3xu060.pdf
Rochau_2-qhjrmj3xu060.pdfGröße: 15.13 MBDownloads: 230
Datum
2021
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The field of cavity optomechanics studies the interaction between electromagnetic radiation and a macroscopic mechanical mode enhanced by an optical cavity. The use of low-dimensional objects in the field of cavity optomechanics is limited by their low scattering cross section compared to the size of the optical cavity mode. Fiber-based Fabry-Pérot micro-cavities can feature tiny mode cross sections and still maintain a high finesse, boosting the light-matter interaction and thus enabling the sensitive detection of the displacement of minute objects. This work presents such a fiber-based microcavity that features a micrometer sized mode cross section in combination with an ultrahigh finesse. For a proof-of-principle demonstration of dynamical backaction in the system, we study stripes made out of a low-stress silicon nitride (SiN) membranes. We are able to position-tune the static optomechanical coupling to the stripe, reaching frequency pull parameters of up to G/2π = 3 GHz/nm. We also demonstrate the optical spring effect on the fundamental out-of-plane flexural mode of the stripe. The measurements match established theory and we obtain a single-photon coupling of g0/2π = 2.5 kHz. With the switch to stripes made out of high-stress silicon nitride (Si3N4), absorption in the stripe is rreduced and and the loaded finesse reaches values up to F = 195000. This is the largest finesse reported in loaded fiber cavities so far. The optomechanical coupling strength is reduced compared to the SiN sample due to a reduced refractive index. We demonstrate the optical spring effect and optical induced damping on two out-of-plane flexural modes of the stripe with a single-photon coupling of g0/2π = 575 Hz. Dynamical backaction cooling of the mechanical mode starting from room temperature down to around 12 K is shown. Towards the realization of dynamical backaction on vibrations of carbon nanotubes (CNTs), we study two sample geometries that allow to position the CNT inside the cavity mode. In a tuning-fork configuration, the presence of the CNT results in a increase of the cavity linewidth. CNTs grown between adjacent SiN stripes allow more flexibility in the sample positioning and alignment. For the first time, we map a static dispersive coupling and are able to position-tune the optomechanical coupling to the CNT with frequency pull parameters of up to G/2π=120 kHz/nm. At a sample position with g0 ≈10 kHz and a loaded cavity finesse of F = 95 000, we observe a peak in the cavity transmission spectrum that we attribute the a flexural vibrational mode of the CNT. We measure first hints of the optical spring effect and of optical induced damping on the vibrations of the CNT.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ROCHAU, Felix, 2021. Cavity nano-optomechanics inside a fiber-based micro-cavity [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Rochau2021Cavit-55787,
  year={2021},
  title={Cavity nano-optomechanics inside a fiber-based micro-cavity},
  author={Rochau, Felix},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55787">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55787/3/Rochau_2-qhjrmj3xu060.pdf"/>
    <dc:creator>Rochau, Felix</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T08:01:08Z</dc:date>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-08T08:01:08Z</dcterms:available>
    <dc:contributor>Rochau, Felix</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55787"/>
    <dcterms:title>Cavity nano-optomechanics inside a fiber-based micro-cavity</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55787/3/Rochau_2-qhjrmj3xu060.pdf"/>
    <dcterms:abstract xml:lang="eng">The field of cavity optomechanics studies the interaction between electromagnetic radiation and a macroscopic mechanical mode enhanced by an optical cavity. The use of low-dimensional objects in the field of cavity optomechanics is limited by their low scattering cross section compared to the size of the optical cavity mode. Fiber-based Fabry-Pérot micro-cavities can feature tiny mode cross sections and still maintain a high finesse, boosting the light-matter interaction and thus enabling the sensitive detection of the displacement of minute objects. This work presents such a fiber-based microcavity that features a micrometer sized mode cross section in combination with an ultrahigh finesse. For a proof-of-principle demonstration of dynamical backaction in the system, we study stripes made out of a low-stress silicon nitride (SiN) membranes. We are able to position-tune the static optomechanical coupling to the stripe, reaching frequency pull parameters of up to G/2π = 3 GHz/nm. We also demonstrate the optical spring effect on the fundamental out-of-plane flexural mode of the stripe. The measurements match established theory and we obtain a single-photon coupling of g0/2π = 2.5 kHz. With the switch to stripes made out of high-stress silicon nitride (Si3N4), absorption in the stripe is rreduced and and the loaded finesse reaches values up to F = 195000. This is the largest finesse reported in loaded fiber cavities so far. The optomechanical coupling strength is reduced compared to the SiN sample due to a reduced refractive index. We demonstrate the optical spring effect and optical induced damping on two out-of-plane flexural modes of the stripe with a single-photon coupling of g0/2π = 575 Hz. Dynamical backaction cooling of the mechanical mode starting from room temperature down to around 12 K is shown. Towards the realization of dynamical backaction on vibrations of carbon nanotubes (CNTs), we study two sample geometries that allow to position the CNT inside the cavity mode. In a tuning-fork configuration, the presence of the CNT results in a increase of the cavity linewidth. CNTs grown between adjacent SiN stripes allow more flexibility in the sample positioning and alignment. For the first time, we map a static dispersive coupling and are able to position-tune the optomechanical coupling to the CNT with frequency pull parameters of up to G/2π=120 kHz/nm. At a sample position with g0 ≈10 kHz and a loaded cavity finesse of F = 95 000, we observe a peak in the cavity transmission spectrum that we attribute the a flexural vibrational mode of the CNT. We measure first hints of the optical spring effect and of optical induced damping on the vibrations of the CNT.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
September 15, 2021
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2021
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen