No-reference Video Quality Assessment and Applications

Lade...
Vorschaubild
Dateien
Zhu_289206.pdf
Zhu_289206.pdfGröße: 6.67 MBDownloads: 567
Datum
2014
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

With more and more visual signals being received by human observers, an important aspect of the quality of experience of such stimuli is the perceived visual quality. In this thesis, new techiques to assess this perceived visual quality of natural videos without a pristine reference video, referred to as no-reference video quality assessment (NR-VQA), are presented, in order to evaluate the performance of existing devices for video capturing or video compression. These techniques adopt a two-stage NR-VQA framework, in which the two stages are distortion measurement and quality prediction. Three NR-VQA metrics are designed to evaluate the performance of video imaging systems, while two computational NR-VQA models are proposed to assess the quality of compressed videos. An optimizing strategy is also designed for feature pooling and prediction models of NR-VQA algorithms.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ZHU, Kongfeng, 2014. No-reference Video Quality Assessment and Applications [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Zhu2014Noref-28920,
  year={2014},
  title={No-reference Video Quality Assessment and Applications},
  author={Zhu, Kongfeng},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28920">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28920/1/Zhu_289206.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-04T12:52:27Z</dc:date>
    <dc:contributor>Zhu, Kongfeng</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:title>No-reference Video Quality Assessment and Applications</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Zhu, Kongfeng</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-04T12:52:27Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28920/1/Zhu_289206.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28920"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">With more and more visual signals being received by human observers, an important aspect of the quality of experience of such stimuli is the perceived visual quality. In this thesis, new techiques to assess this perceived visual quality of natural videos without a pristine reference video, referred to as no-reference video quality assessment (NR-VQA), are presented, in order to evaluate the performance of existing devices for video capturing or video compression. These techniques adopt a two-stage NR-VQA framework, in which the two stages are distortion measurement and quality prediction. Three NR-VQA metrics are designed to evaluate the performance of video imaging systems, while two computational NR-VQA models are proposed to assess the quality of compressed videos. An optimizing strategy is also designed for feature pooling and prediction models of NR-VQA algorithms.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
July 17, 2014
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen