Solving the Linear 1D Thermoelasticity Equations with Pure Delay

Lade...
Vorschaubild
Dateien
Pokojovy_0-289839.pdf
Pokojovy_0-289839.pdfGröße: 281.68 KBDownloads: 235
Datum
2015
Autor:innen
Khusainov, Denys Ya
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Mathematics and Mathematical Sciences. 2015, 2015, 479267. ISSN 0161-1712. eISSN 1687-0425. Available under: doi: 10.1155/2015/479267
Zusammenfassung

We propose a system of partial differential equations with a single constant delay r>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1 . For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as r--> 0. Finally, we deduce an explicit solution representation for the delay problem.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KHUSAINOV, Denys Ya, Michael POKOJOVY, 2015. Solving the Linear 1D Thermoelasticity Equations with Pure Delay. In: International Journal of Mathematics and Mathematical Sciences. 2015, 2015, 479267. ISSN 0161-1712. eISSN 1687-0425. Available under: doi: 10.1155/2015/479267
BibTex
@article{Khusainov2015Solvi-31401,
  year={2015},
  doi={10.1155/2015/479267},
  title={Solving the Linear 1D Thermoelasticity Equations with Pure Delay},
  volume={2015},
  issn={0161-1712},
  journal={International Journal of Mathematics and Mathematical Sciences},
  author={Khusainov, Denys Ya and Pokojovy, Michael},
  note={Article Number: 479267}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31401">
    <dcterms:abstract xml:lang="eng">We propose a system of partial differential equations with a single constant delay r&gt;0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R&lt;sub&gt;1&lt;/sub&gt; . For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as r--&gt; 0. Finally, we deduce an explicit solution representation for the delay problem.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31401/3/Pokojovy_0-289839.pdf"/>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31401"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31401/3/Pokojovy_0-289839.pdf"/>
    <dc:contributor>Pokojovy, Michael</dc:contributor>
    <dc:creator>Khusainov, Denys Ya</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Khusainov, Denys Ya</dc:contributor>
    <dc:creator>Pokojovy, Michael</dc:creator>
    <dcterms:title>Solving the Linear 1D Thermoelasticity Equations with Pure Delay</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-08T15:34:53Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-08T15:34:53Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen