Publikation:

Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction

Lade...
Vorschaubild

Dateien

Kraus_2-hnftsta0l958.pdf
Kraus_2-hnftsta0l958.pdfGröße: 127.67 MBDownloads: 186

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 740754

Projekt

VICTORIA - Video analysis for Investigation of Criminal and Terrorist Activities
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Sensors. MDPI. 2020, 20(18), pp. 5426. eISSN 1424-8220. Available under: doi: 10.3390/s20185426

Zusammenfassung

The technical progress in the last decades makes photo and video recording devices omnipresent. This change has a significant impact, among others, on police work. It is no longer unusual that a myriad of digital data accumulates after a criminal act, which must be reviewed by criminal investigators to collect evidence or solve the crime. This paper presents the VICTORIA Interactive 4D Scene Reconstruction and Analysis Framework ("ISRA-4D" 1.0), an approach for the visual consolidation of heterogeneous video and image data in a 3D reconstruction of the corresponding environment. First, by reconstructing the environment in which the materials were created, a shared spatial context of all available materials is established. Second, all footage is spatially and temporally registered within this 3D reconstruction. Third, a visualization of the hereby created 4D reconstruction (3D scene + time) is provided, which can be analyzed interactively. Additional information on video and image content is also extracted and displayed and can be analyzed with supporting visualizations. The presented approach facilitates the process of filtering, annotating, analyzing, and getting an overview of large amounts of multimedia material. The framework is evaluated using four case studies which demonstrate its broad applicability. Furthermore, the framework allows the user to immerse themselves in the analysis by entering the scenario in virtual reality. This feature is qualitatively evaluated by means of interviews of criminal investigators and outlines potential benefits such as improved spatial understanding and the initiation of new fields of application.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

4D reconstruction; visual exploration; computer vision; machine learning; forensics; virtual reality; surveillance systems

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690KRAUS, Matthias, Thomas POLLOK, Matthias MILLER, Timon KILIAN, Tobias MORITZ, Daniel SCHWEITZER, Jürgen BEYERER, Daniel A. KEIM, Chengchao QU, Wolfgang JENTNER, 2020. Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction. In: Sensors. MDPI. 2020, 20(18), pp. 5426. eISSN 1424-8220. Available under: doi: 10.3390/s20185426
BibTex
@article{Kraus2020-09-22Towar-53087,
  year={2020},
  doi={10.3390/s20185426},
  title={Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction},
  number={18},
  volume={20},
  journal={Sensors},
  author={Kraus, Matthias and Pollok, Thomas and Miller, Matthias and Kilian, Timon and Moritz, Tobias and Schweitzer, Daniel and Beyerer, Jürgen and Keim, Daniel A. and Qu, Chengchao and Jentner, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53087">
    <dcterms:issued>2020-09-22</dcterms:issued>
    <dcterms:abstract xml:lang="eng">The technical progress in the last decades makes photo and video recording devices omnipresent. This change has a significant impact, among others, on police work. It is no longer unusual that a myriad of digital data accumulates after a criminal act, which must be reviewed by criminal investigators to collect evidence or solve the crime. This paper presents the VICTORIA Interactive 4D Scene Reconstruction and Analysis Framework ("ISRA-4D" 1.0), an approach for the visual consolidation of heterogeneous video and image data in a 3D reconstruction of the corresponding environment. First, by reconstructing the environment in which the materials were created, a shared spatial context of all available materials is established. Second, all footage is spatially and temporally registered within this 3D reconstruction. Third, a visualization of the hereby created 4D reconstruction (3D scene + time) is provided, which can be analyzed interactively. Additional information on video and image content is also extracted and displayed and can be analyzed with supporting visualizations. The presented approach facilitates the process of filtering, annotating, analyzing, and getting an overview of large amounts of multimedia material. The framework is evaluated using four case studies which demonstrate its broad applicability. Furthermore, the framework allows the user to immerse themselves in the analysis by entering the scenario in virtual reality. This feature is qualitatively evaluated by means of interviews of criminal investigators and outlines potential benefits such as improved spatial understanding and the initiation of new fields of application.</dcterms:abstract>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction</dcterms:title>
    <dc:contributor>Kraus, Matthias</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53087/1/Kraus_2-hnftsta0l958.pdf"/>
    <dc:creator>Kraus, Matthias</dc:creator>
    <dc:contributor>Qu, Chengchao</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53087/1/Kraus_2-hnftsta0l958.pdf"/>
    <dc:creator>Kilian, Timon</dc:creator>
    <dc:contributor>Moritz, Tobias</dc:contributor>
    <dc:creator>Qu, Chengchao</dc:creator>
    <dc:contributor>Pollok, Thomas</dc:contributor>
    <dc:creator>Miller, Matthias</dc:creator>
    <dc:contributor>Beyerer, Jürgen</dc:contributor>
    <dc:creator>Moritz, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T10:53:54Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pollok, Thomas</dc:creator>
    <dc:contributor>Miller, Matthias</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Beyerer, Jürgen</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Schweitzer, Daniel</dc:creator>
    <dc:contributor>Kilian, Timon</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T10:53:54Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53087"/>
    <dc:contributor>Schweitzer, Daniel</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen