Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction

Lade...
Vorschaubild
Dateien
Kraus_2-hnftsta0l958.pdf
Kraus_2-hnftsta0l958.pdfGröße: 127.67 MBDownloads: 180
Datum
2020
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 740754
Projekt
VICTORIA - Video analysis for Investigation of Criminal and Terrorist Activities
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Sensors. MDPI. 2020, 20(18), pp. 5426. eISSN 1424-8220. Available under: doi: 10.3390/s20185426
Zusammenfassung

The technical progress in the last decades makes photo and video recording devices omnipresent. This change has a significant impact, among others, on police work. It is no longer unusual that a myriad of digital data accumulates after a criminal act, which must be reviewed by criminal investigators to collect evidence or solve the crime. This paper presents the VICTORIA Interactive 4D Scene Reconstruction and Analysis Framework ("ISRA-4D" 1.0), an approach for the visual consolidation of heterogeneous video and image data in a 3D reconstruction of the corresponding environment. First, by reconstructing the environment in which the materials were created, a shared spatial context of all available materials is established. Second, all footage is spatially and temporally registered within this 3D reconstruction. Third, a visualization of the hereby created 4D reconstruction (3D scene + time) is provided, which can be analyzed interactively. Additional information on video and image content is also extracted and displayed and can be analyzed with supporting visualizations. The presented approach facilitates the process of filtering, annotating, analyzing, and getting an overview of large amounts of multimedia material. The framework is evaluated using four case studies which demonstrate its broad applicability. Furthermore, the framework allows the user to immerse themselves in the analysis by entering the scenario in virtual reality. This feature is qualitatively evaluated by means of interviews of criminal investigators and outlines potential benefits such as improved spatial understanding and the initiation of new fields of application.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
4D reconstruction; visual exploration; computer vision; machine learning; forensics; virtual reality; surveillance systems
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KRAUS, Matthias, Thomas POLLOK, Matthias MILLER, Timon KILIAN, Tobias MORITZ, Daniel SCHWEITZER, Jürgen BEYERER, Daniel A. KEIM, Chengchao QU, Wolfgang JENTNER, 2020. Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction. In: Sensors. MDPI. 2020, 20(18), pp. 5426. eISSN 1424-8220. Available under: doi: 10.3390/s20185426
BibTex
@article{Kraus2020-09-22Towar-53087,
  year={2020},
  doi={10.3390/s20185426},
  title={Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction},
  number={18},
  volume={20},
  journal={Sensors},
  author={Kraus, Matthias and Pollok, Thomas and Miller, Matthias and Kilian, Timon and Moritz, Tobias and Schweitzer, Daniel and Beyerer, Jürgen and Keim, Daniel A. and Qu, Chengchao and Jentner, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53087">
    <dcterms:issued>2020-09-22</dcterms:issued>
    <dcterms:abstract xml:lang="eng">The technical progress in the last decades makes photo and video recording devices omnipresent. This change has a significant impact, among others, on police work. It is no longer unusual that a myriad of digital data accumulates after a criminal act, which must be reviewed by criminal investigators to collect evidence or solve the crime. This paper presents the VICTORIA Interactive 4D Scene Reconstruction and Analysis Framework ("ISRA-4D" 1.0), an approach for the visual consolidation of heterogeneous video and image data in a 3D reconstruction of the corresponding environment. First, by reconstructing the environment in which the materials were created, a shared spatial context of all available materials is established. Second, all footage is spatially and temporally registered within this 3D reconstruction. Third, a visualization of the hereby created 4D reconstruction (3D scene + time) is provided, which can be analyzed interactively. Additional information on video and image content is also extracted and displayed and can be analyzed with supporting visualizations. The presented approach facilitates the process of filtering, annotating, analyzing, and getting an overview of large amounts of multimedia material. The framework is evaluated using four case studies which demonstrate its broad applicability. Furthermore, the framework allows the user to immerse themselves in the analysis by entering the scenario in virtual reality. This feature is qualitatively evaluated by means of interviews of criminal investigators and outlines potential benefits such as improved spatial understanding and the initiation of new fields of application.</dcterms:abstract>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Toward Mass Video Data Analysis : Interactive and Immersive 4D Scene Reconstruction</dcterms:title>
    <dc:contributor>Kraus, Matthias</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53087/1/Kraus_2-hnftsta0l958.pdf"/>
    <dc:creator>Kraus, Matthias</dc:creator>
    <dc:contributor>Qu, Chengchao</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53087/1/Kraus_2-hnftsta0l958.pdf"/>
    <dc:creator>Kilian, Timon</dc:creator>
    <dc:contributor>Moritz, Tobias</dc:contributor>
    <dc:creator>Qu, Chengchao</dc:creator>
    <dc:contributor>Pollok, Thomas</dc:contributor>
    <dc:creator>Miller, Matthias</dc:creator>
    <dc:contributor>Beyerer, Jürgen</dc:contributor>
    <dc:creator>Moritz, Tobias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T10:53:54Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pollok, Thomas</dc:creator>
    <dc:contributor>Miller, Matthias</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Beyerer, Jürgen</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Schweitzer, Daniel</dc:creator>
    <dc:contributor>Kilian, Timon</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T10:53:54Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53087"/>
    <dc:contributor>Schweitzer, Daniel</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen