Beyond Friendships and Followers : The Wikipedia Social Network

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Geiß, Johanna
Gertz, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
PEI, Jian, ed., Fabrizio SILVESTRI, ed., Jie TANG, ed.. ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York, NY: ACM, 2015, pp. 472-479. ISBN 978-1-4503-3854-7. Available under: doi: 10.1145/2808797.2808840
Zusammenfassung

Most traditional social networks rely on explicitly given relations between users, their friends and followers. In this paper, we go beyond well structured data repositories and create a person-centric network from unstructured text -- the Wikipedia Social Network. To identify persons in Wikipedia, we make use of interwiki links, Wikipedia categories and person related information available in Wikidata. From the co-occurrences of persons on a Wikipedia page we construct a large-scale person-centric network and provide a weighting scheme for the relationship of two persons based on the distances of their mentions within the text. We extract key characteristics of the network such as centrality, clustering coefficient and component sizes for which we find values that are typical for social networks. Using state-of-the-art algorithms for community detection in massive networks, we identify interesting communities and evaluate them against Wikipedia categories. The Wikipedia social network developed this way provides an important source for future social analysis tasks.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 25. Aug. 2015 - 28. Aug. 2015, Paris, France
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GEISS, Johanna, Andreas SPITZ, Michael GERTZ, 2015. Beyond Friendships and Followers : The Wikipedia Social Network. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Paris, France, 25. Aug. 2015 - 28. Aug. 2015. In: PEI, Jian, ed., Fabrizio SILVESTRI, ed., Jie TANG, ed.. ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. New York, NY: ACM, 2015, pp. 472-479. ISBN 978-1-4503-3854-7. Available under: doi: 10.1145/2808797.2808840
BibTex
@inproceedings{Gei2015Beyon-54741,
  year={2015},
  doi={10.1145/2808797.2808840},
  title={Beyond Friendships and Followers : The Wikipedia Social Network},
  isbn={978-1-4503-3854-7},
  publisher={ACM},
  address={New York, NY},
  booktitle={ASONAM '15 : Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015},
  pages={472--479},
  editor={Pei, Jian and Silvestri, Fabrizio and Tang, Jie},
  author={Geiß, Johanna and Spitz, Andreas and Gertz, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54741">
    <dc:creator>Gertz, Michael</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-26T14:45:39Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-26T14:45:39Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Geiß, Johanna</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Geiß, Johanna</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:title>Beyond Friendships and Followers : The Wikipedia Social Network</dcterms:title>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Most traditional social networks rely on explicitly given relations between users, their friends and followers. In this paper, we go beyond well structured data repositories and create a person-centric network from unstructured text -- the Wikipedia Social Network. To identify persons in Wikipedia, we make use of interwiki links, Wikipedia categories and person related information available in Wikidata. From the co-occurrences of persons on a Wikipedia page we construct a large-scale person-centric network and provide a weighting scheme for the relationship of two persons based on the distances of their mentions within the text. We extract key characteristics of the network such as centrality, clustering coefficient and component sizes for which we find values that are typical for social networks. Using state-of-the-art algorithms for community detection in massive networks, we identify interesting communities and evaluate them against Wikipedia categories. The Wikipedia social network developed this way provides an important source for future social analysis tasks.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54741"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen