Publikation:

Geometric flow equations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

CORTÉS, Vicente, ed., Klaus KRÖNCKE, ed., Jan LOUIS, ed.. Geometric flows and the geometry of space-time. Cham: Birkhäuser, 2018, pp. 77-121. Tutorials, schools, and workshops in the mathematical sciences. ISBN 978-3-030-01125-3. Available under: doi: 10.1007/978-3-030-01126-0_2

Zusammenfassung

In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address

- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.
- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.
- the evolution of graphical hypersurfaces under mean curvature flow.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

mean curvature flow, geometric flow equation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SCHNÜRER, Oliver C., 2018. Geometric flow equations. In: CORTÉS, Vicente, ed., Klaus KRÖNCKE, ed., Jan LOUIS, ed.. Geometric flows and the geometry of space-time. Cham: Birkhäuser, 2018, pp. 77-121. Tutorials, schools, and workshops in the mathematical sciences. ISBN 978-3-030-01125-3. Available under: doi: 10.1007/978-3-030-01126-0_2
BibTex
@incollection{Schnurer2018Geome-47073,
  year={2018},
  doi={10.1007/978-3-030-01126-0_2},
  title={Geometric flow equations},
  isbn={978-3-030-01125-3},
  publisher={Birkhäuser},
  address={Cham},
  series={Tutorials, schools, and workshops in the mathematical sciences},
  booktitle={Geometric flows and the geometry of space-time},
  pages={77--121},
  editor={Cortés, Vicente and Kröncke, Klaus and Louis, Jan},
  author={Schnürer, Oliver C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47073">
    <dc:contributor>Schnürer, Oliver C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schnürer, Oliver C.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dc:date>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Geometric flow equations</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address&lt;br /&gt;&lt;br /&gt;- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.&lt;br /&gt;- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.&lt;br /&gt;- the evolution of graphical hypersurfaces under mean curvature flow.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47073"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen