Geometric flow equations

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
CORTÉS, Vicente, ed., Klaus KRÖNCKE, ed., Jan LOUIS, ed.. Geometric flows and the geometry of space-time. Cham: Birkhäuser, 2018, pp. 77-121. Tutorials, schools, and workshops in the mathematical sciences. ISBN 978-3-030-01125-3. Available under: doi: 10.1007/978-3-030-01126-0_2
Zusammenfassung

In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address

- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.
- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.
- the evolution of graphical hypersurfaces under mean curvature flow.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
mean curvature flow, geometric flow equation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHNÜRER, Oliver C., 2018. Geometric flow equations. In: CORTÉS, Vicente, ed., Klaus KRÖNCKE, ed., Jan LOUIS, ed.. Geometric flows and the geometry of space-time. Cham: Birkhäuser, 2018, pp. 77-121. Tutorials, schools, and workshops in the mathematical sciences. ISBN 978-3-030-01125-3. Available under: doi: 10.1007/978-3-030-01126-0_2
BibTex
@incollection{Schnurer2018Geome-47073,
  year={2018},
  doi={10.1007/978-3-030-01126-0_2},
  title={Geometric flow equations},
  isbn={978-3-030-01125-3},
  publisher={Birkhäuser},
  address={Cham},
  series={Tutorials, schools, and workshops in the mathematical sciences},
  booktitle={Geometric flows and the geometry of space-time},
  pages={77--121},
  editor={Cortés, Vicente and Kröncke, Klaus and Louis, Jan},
  author={Schnürer, Oliver C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47073">
    <dc:contributor>Schnürer, Oliver C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schnürer, Oliver C.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dc:date>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Geometric flow equations</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address&lt;br /&gt;&lt;br /&gt;- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.&lt;br /&gt;- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.&lt;br /&gt;- the evolution of graphical hypersurfaces under mean curvature flow.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47073"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen