Geometric flow equations

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
Geometric flows and the geometry of space-time / Cortés, Vicente; Kröncke, Klaus; Louis, Jan (Hrsg.). - Cham : Birkhäuser, 2018. - (Tutorials, schools, and workshops in the mathematical sciences). - S. 77-121. - ISBN 978-3-030-01125-3
Zusammenfassung
In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address

- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.
- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.
- the evolution of graphical hypersurfaces under mean curvature flow.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
mean curvature flow, geometric flow equation
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690SCHNÜRER, Oliver C., 2018. Geometric flow equations. In: CORTÉS, Vicente, ed., Klaus KRÖNCKE, ed., Jan LOUIS, ed.. Geometric flows and the geometry of space-time. Cham:Birkhäuser, pp. 77-121. ISBN 978-3-030-01125-3. Available under: doi: 10.1007/978-3-030-01126-0_2
BibTex
@incollection{Schnurer2018Geome-47073,
  year={2018},
  doi={10.1007/978-3-030-01126-0_2},
  title={Geometric flow equations},
  isbn={978-3-030-01125-3},
  publisher={Birkhäuser},
  address={Cham},
  series={Tutorials, schools, and workshops in the mathematical sciences},
  booktitle={Geometric flows and the geometry of space-time},
  pages={77--121},
  editor={Cortés, Vicente and Kröncke, Klaus and Louis, Jan},
  author={Schnürer, Oliver C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47073">
    <dc:contributor>Schnürer, Oliver C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schnürer, Oliver C.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dc:date>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Geometric flow equations</dcterms:title>
    <dcterms:abstract xml:lang="eng">In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address&lt;br /&gt;&lt;br /&gt;- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.&lt;br /&gt;- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.&lt;br /&gt;- the evolution of graphical hypersurfaces under mean curvature flow.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47073"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet