Geometric flow equations
Geometric flow equations
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
Geometric flows and the geometry of space-time / Cortés, Vicente; Kröncke, Klaus; Louis, Jan (Hrsg.). - Cham : Birkhäuser, 2018. - (Tutorials, schools, and workshops in the mathematical sciences). - S. 77-121. - ISBN 978-3-030-01125-3
Zusammenfassung
In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address
- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.
- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.
- the evolution of graphical hypersurfaces under mean curvature flow.
- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.
- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.
- the evolution of graphical hypersurfaces under mean curvature flow.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
mean curvature flow, geometric flow equation
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
SCHNÜRER, Oliver C., 2018. Geometric flow equations. In: CORTÉS, Vicente, ed., Klaus KRÖNCKE, ed., Jan LOUIS, ed.. Geometric flows and the geometry of space-time. Cham:Birkhäuser, pp. 77-121. ISBN 978-3-030-01125-3. Available under: doi: 10.1007/978-3-030-01126-0_2BibTex
@incollection{Schnurer2018Geome-47073, year={2018}, doi={10.1007/978-3-030-01126-0_2}, title={Geometric flow equations}, isbn={978-3-030-01125-3}, publisher={Birkhäuser}, address={Cham}, series={Tutorials, schools, and workshops in the mathematical sciences}, booktitle={Geometric flows and the geometry of space-time}, pages={77--121}, editor={Cortés, Vicente and Kröncke, Klaus and Louis, Jan}, author={Schnürer, Oliver C.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47073"> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Schnürer, Oliver C.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-28T09:17:59Z</dc:date> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Geometric flow equations</dcterms:title> <dcterms:abstract xml:lang="eng">In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address<br /><br />- hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.<br />- the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.<br />- the evolution of graphical hypersurfaces under mean curvature flow.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47073"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja