Global solutions and random dynamical systems for rough evolution equations
Global solutions and random dynamical systems for rough evolution equations
No Thumbnail Available
Files
There are no files associated with this item.
Date
2020
Authors
Hesse, Robert
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Discrete & Continuous Dynamical Systems, Series B ; 25 (2020), 7. - pp. 2723-2748. - American Institute of Mathematical Sciences (AIMS). - ISSN 1531-3492. - eISSN 1553-524X
Abstract
We consider infinite-dimensional parabolic rough evolution equations. Using regularizing properties of analytic semigroups we prove global-in-time existence of solutions and investigate random dynamical systems for such equations.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Stochastic evolution equations, random dynamical systems, rough paths theory, fractional Brownian motion
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HESSE, Robert, Alexandra NEAMTU, 2020. Global solutions and random dynamical systems for rough evolution equations. In: Discrete & Continuous Dynamical Systems, Series B. American Institute of Mathematical Sciences (AIMS). 25(7), pp. 2723-2748. ISSN 1531-3492. eISSN 1553-524X. Available under: doi: 10.3934/dcdsb.2020029BibTex
@article{Hesse2020Globa-53777, year={2020}, doi={10.3934/dcdsb.2020029}, title={Global solutions and random dynamical systems for rough evolution equations}, number={7}, volume={25}, issn={1531-3492}, journal={Discrete & Continuous Dynamical Systems, Series B}, pages={2723--2748}, author={Hesse, Robert and Neamtu, Alexandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53777"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Neamtu, Alexandra</dc:contributor> <dcterms:abstract xml:lang="eng">We consider infinite-dimensional parabolic rough evolution equations. Using regularizing properties of analytic semigroups we prove global-in-time existence of solutions and investigate random dynamical systems for such equations.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Global solutions and random dynamical systems for rough evolution equations</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Neamtu, Alexandra</dc:creator> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53777"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T07:01:01Z</dc:date> <dcterms:issued>2020</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T07:01:01Z</dcterms:available> <dc:contributor>Hesse, Robert</dc:contributor> <dc:creator>Hesse, Robert</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Unknown