Saupe, Dietmar

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Saupe
Vorname
Dietmar
Name
Weiterer Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 5 von 5
Vorschaubild nicht verfügbar
Veröffentlichung

Crowdsourced Estimation of Collective Just Noticeable Difference for Compressed Video with Flicker Test and QUEST+

2023-09-14, Jenadeleh, Mohsen, Hamzaoui, Raouf, Reips, Ulf-Dietrich, Saupe, Dietmar

The concept of video-wise just noticeable difference (JND) was recently proposed to determine the lowest bitrate at which a source video can be compressed without perceptible quality loss with a given probability. This bitrate is usually obtained from an estimate of the satisfied used ratio (SUR) at each bitrate, respectively encoding quality parameter. The SUR is the probability that the distortion corresponding to this bitrate is not noticeable. Commonly, the SUR is computed experimentally by estimating the subjective JND threshold of each subject using binary search, fitting a distribution model to the collected data, and creating the complementary cumulative distribution function of the distribution. The subjective tests consist of paired comparisons between the source video and compressed versions. However, we show that this approach typically over- or underestimates the SUR. To address this shortcoming, we directly estimate the SUR function by considering the entire population as a collective observer. Our method randomly chooses the subject for each paired comparison and uses a state-of-the-art Bayesian adaptive psychometric method (QUEST+) to select the compressed video in the paired comparison. Our simulations show that this collective method yields more accurate SUR results with fewer comparisons. We also provide a subjective experiment to assess the JND and SUR for compressed video. In the paired comparisons, we apply a flicker test that compares a video that interleaves the source video and its compressed version with the source video. Analysis of the subjective data revealed that the flicker test provides on average higher sensitivity and precision in the assessment of the JND threshold than the usual test that compares compressed versions with the source video. Using crowdsourcing and the proposed approach, we build a JND dataset for 45 source video sequences that are encoded with both advanced video coding (AVC) and versatile video coding (VVC) at all available quantization parameters. Our dataset is available at http://database.mmsp-kn.de/flickervidset-database.html.

Lade...
Vorschaubild
Veröffentlichung

KonIQ-10k: Towards an ecologically valid and large-scale IQA database

2018-03-22T17:50:05Z, Lin, Hanhe, Hosu, Vlad, Saupe, Dietmar

The main challenge in applying state-of-the-art deep learning methods to predict image quality in-the-wild is the relatively small size of existing quality scored datasets. The reason for the lack of larger datasets is the massive resources required in generating diverse and publishable content. We present a new systematic and scalable approach to create large-scale, authentic and diverse image datasets for Image Quality Assessment (IQA). We show how we built an IQA database, KonIQ-10k, consisting of 10,073 images, on which we performed very large scale crowdsourcing experiments in order to obtain reliable quality ratings from 1,467 crowd workers (1.2 million ratings). We argue for its ecological validity by analyzing the diversity of the dataset, by comparing it to state-of-the-art IQA databases, and by checking the reliability of our user studies.

Lade...
Vorschaubild
Veröffentlichung

Effective Aesthetics Prediction with Multi-level Spatially Pooled Features

2019-04-02T12:58:12Z, Hosu, Vlad, Goldlücke, Bastian, Saupe, Dietmar

We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.

Lade...
Vorschaubild
Veröffentlichung

Detection of incomplete rectangular contours with application in archaeology

2015, Zingman, Igor, Saupe, Dietmar, Lambers, Karsten

Lade...
Vorschaubild
Veröffentlichung

Technical Report on Visual Quality Assessment for Frame Interpolation

2019-01-16T16:11:39Z, Men, Hui, Lin, Hanhe, Hosu, Vlad, Maurer, Daniel, Bruhn, Andrés, Saupe, Dietmar

Current benchmarks for optical flow algorithms evaluate the estimation quality by comparing their predicted flow field with the ground truth, and additionally may compare interpolated frames, based on these predictions, with the correct frames from the actual image sequences. For the latter comparisons, objective measures such as mean square errors are applied. However, for applications like image interpolation, the expected user's quality of experience cannot be fully deduced from such simple quality measures. Therefore, we conducted a subjective quality assessment study by crowdsourcing for the interpolated images provided in one of the optical flow benchmarks, the Middlebury benchmark. We used paired comparisons with forced choice and reconstructed absolute quality scale values according to Thurstone's model using the classical least squares method. The results give rise to a re-ranking of 141 participating algorithms w.r.t. visual quality of interpolated frames mostly based on optical flow estimation. Our re-ranking result shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks.