Saupe, Dietmar


Suchergebnisse Publikationen

Gerade angezeigt 1 - 3 von 3
Vorschaubild nicht verfügbar

Crowdsourced Estimation of Collective Just Noticeable Difference for Compressed Video with Flicker Test and QUEST+

2023-09-14, Jenadeleh, Mohsen, Hamzaoui, Raouf, Reips, Ulf-Dietrich, Saupe, Dietmar

The concept of video-wise just noticeable difference (JND) was recently proposed to determine the lowest bitrate at which a source video can be compressed without perceptible quality loss with a given probability. This bitrate is usually obtained from an estimate of the satisfied used ratio (SUR) at each bitrate, respectively encoding quality parameter. The SUR is the probability that the distortion corresponding to this bitrate is not noticeable. Commonly, the SUR is computed experimentally by estimating the subjective JND threshold of each subject using binary search, fitting a distribution model to the collected data, and creating the complementary cumulative distribution function of the distribution. The subjective tests consist of paired comparisons between the source video and compressed versions. However, we show that this approach typically over- or underestimates the SUR. To address this shortcoming, we directly estimate the SUR function by considering the entire population as a collective observer. Our method randomly chooses the subject for each paired comparison and uses a state-of-the-art Bayesian adaptive psychometric method (QUEST+) to select the compressed video in the paired comparison. Our simulations show that this collective method yields more accurate SUR results with fewer comparisons. We also provide a subjective experiment to assess the JND and SUR for compressed video. In the paired comparisons, we apply a flicker test that compares a video that interleaves the source video and its compressed version with the source video. Analysis of the subjective data revealed that the flicker test provides on average higher sensitivity and precision in the assessment of the JND threshold than the usual test that compares compressed versions with the source video. Using crowdsourcing and the proposed approach, we build a JND dataset for 45 source video sequences that are encoded with both advanced video coding (AVC) and versatile video coding (VVC) at all available quantization parameters. Our dataset is available at

Vorschaubild nicht verfügbar

KonIQ++ : Boosting No-Reference Image Quality Assessment in the Wild by Jointly Predicting Image Quality and Defects

2021, Su, Shaolin, Hosu, Vlad, Lin, Hanhe, Zhang, Yanning, Saupe, Dietmar

Although image quality assessment (IQA) in-the-wild has been researched in computer vision, it is still challenging to precisely estimate perceptual image quality in the presence of real-world complex and composite distortions. In order to improve machine learning solutions for IQA, we consider side information denoting the presence of distortions besides the basic quality ratings in IQA datasets. Specifically, we extend one of the largest in-the-wild IQA databases, KonIQ-10k, to KonIQ++, by collecting distortion annotations for each image, aiming to improve quality prediction together with distortion identification. We further explore the interactions between image quality and distortion by proposing a novel IQA model, which jointly predicts image quality and distortion by recurrently refining task-specific features in a multi-stage fusion framework. Our dataset KonIQ++, along with the model, boosts IQA performance and generalization ability, demonstrating its potential for solving the challenging authentic IQA task. The proposed model can also accurately predict distinct image defects, suggesting its application in image processing tasks such as image colorization and deblurring.

Vorschaubild nicht verfügbar

KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment

2020-01-24, Hosu, Vlad, Lin, Hanhe, Sziranyi, Tamas, Saupe, Dietmar

Deep learning methods for image quality assessment (IQA) are limited due to the small size of existing datasets. Extensive datasets require substantial resources both for generating publishable content and annotating it accurately. We present a systematic and scalable approach to creating KonIQ-10k, the largest IQA dataset to date, consisting of 10,073 quality scored images. It is the first in-the-wild database aiming for ecological validity, concerning the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models. We propose a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512 × 384 ). Correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image.