Saupe, Dietmar

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Saupe
Vorname
Dietmar
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 9 von 9
Lade...
Vorschaubild
Veröffentlichung

Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study

2022, Lin, Hanhe, Men, Hui, Yan, Yijun, Ren, Jinchang, Saupe, Dietmar

Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.

Lade...
Vorschaubild
Veröffentlichung

Visual Quality Assessment for Interpolated Slow-motion Videos based on a Novel Database

2020, Men, Hui, Hosu, Vlad, Lin, Hanhe, Bruhn, Andres, Saupe, Dietmar

Professional video editing tools can generate slow-motion video by interpolating frames from video recorded at a standard frame rate. Thereby the perceptual quality of such interpolated slow-motion videos strongly depends on the underlying interpolation techniques. We built a novel benchmark database that is specifically tailored for interpolated slow-motion videos (KoSMo-1k). It consists of 1,350 interpolated video sequences, from 30 different content sources, along with their subjective quality ratings from up to ten subjective comparisons per video pair. Moreover, we evaluated the performance of twelve existing full-reference (FR) image/video quality assessment (I/VQA) methods on the benchmark. In this way, we are able to show that specifically tailored quality assessment methods for interpolated slow-motion videos are needed, since the evaluated methods - despite their good performance on real-time video databases - do not give satisfying results when it comes to frame interpolation.

Vorschaubild nicht verfügbar
Veröffentlichung

Spatiotemporal Feature Combination Model for No-Reference Video Quality Assessment

2018, Men, Hui, Lin, Hanhe, Saupe, Dietmar

One of the main challenges in no-reference video quality assessment is temporal variation in a video. Methods typically were designed and tested on videos with artificial distortions, without considering spatial and temporal variations simultaneously. We propose a no-reference spatiotemporal feature combination model which extracts spatiotemporal information from a video, and tested it on a database with authentic distortions. Comparing with other methods, our model gave satisfying performance for assessing the quality of natural videos.

Lade...
Vorschaubild
Veröffentlichung

Subjective Image Quality Assessment With Boosted Triplet Comparisons

2021, Men, Hui, Lin, Hanhe, Jenadeleh, Mohsen, Saupe, Dietmar

Lade...
Vorschaubild
Veröffentlichung

Technical Report on Visual Quality Assessment for Frame Interpolation

2019-01-16T16:11:39Z, Men, Hui, Lin, Hanhe, Hosu, Vlad, Maurer, Daniel, Bruhn, Andrés, Saupe, Dietmar

Current benchmarks for optical flow algorithms evaluate the estimation quality by comparing their predicted flow field with the ground truth, and additionally may compare interpolated frames, based on these predictions, with the correct frames from the actual image sequences. For the latter comparisons, objective measures such as mean square errors are applied. However, for applications like image interpolation, the expected user's quality of experience cannot be fully deduced from such simple quality measures. Therefore, we conducted a subjective quality assessment study by crowdsourcing for the interpolated images provided in one of the optical flow benchmarks, the Middlebury benchmark. We used paired comparisons with forced choice and reconstructed absolute quality scale values according to Thurstone's model using the classical least squares method. The results give rise to a re-ranking of 141 participating algorithms w.r.t. visual quality of interpolated frames mostly based on optical flow estimation. Our re-ranking result shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks.

Lade...
Vorschaubild
Veröffentlichung

Empirical evaluation of no-reference VQA methods on a natural video quality database

2017-05, Men, Hui, Lin, Hanhe, Saupe, Dietmar

No-Reference (NR) Video Quality Assessment (VQA) is a challenging task since it predicts the visual quality of a video sequence without comparison to some original reference video. Several NR-VQA methods have been proposed. However, all of them were designed and tested on databases with artificially distorted videos. Therefore, it remained an open question how well these NR-VQA methods perform for natural videos. We evaluated two popular VQA methods on our newly built natural VQA database KoNViD-1k. In addition, we found that merely combining five simple VQA-related features, i.e., contrast, colorfulness, blurriness, spatial information, and temporal information, already gave a performance about as well as those of the established NR-VQA methods. However, for all methods we found that they are unsatisfying when assessing natural videos (correlation coefficients below 0.6). These findings show that NR-VQA is not yet matured and in need of further substantial improvement.

Lade...
Vorschaubild
Veröffentlichung

Subjective annotation for a frame interpolation benchmark using artefact amplification

2020-12, Men, Hui, Hosu, Vlad, Lin, Hanhe, Bruhn, Andrés, Saupe, Dietmar

Current benchmarks for optical flow algorithms evaluate the estimation either directly by comparing the predicted flow fields with the ground truth or indirectly by using the predicted flow fields for frame interpolation and then comparing the interpolated frames with the actual frames. In the latter case, objective quality measures such as the mean squared error are typically employed. However, it is well known that for image quality assessment, the actual quality experienced by the user cannot be fully deduced from such simple measures. Hence, we conducted a subjective quality assessment crowdscouring study for the interpolated frames provided by one of the optical flow benchmarks, the Middlebury benchmark. It contains interpolated frames from 155 methods applied to each of 8 contents. For this purpose, we collected forced-choice paired comparisons between interpolated images and corresponding ground truth. To increase the sensitivity of observers when judging minute difference in paired comparisons we introduced a new method to the field of full-reference quality assessment, called artefact amplification. From the crowdsourcing data (3720 comparisons of 20 votes each) we reconstructed absolute quality scale values according to Thurstone’s model. As a result, we obtained a re-ranking of the 155 participating algorithms w.r.t. the visual quality of the interpolated frames. This re-ranking not only shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks, the results also provide the ground truth for designing novel image quality assessment (IQA) methods dedicated to perceptual quality of interpolated images. As a first step, we proposed such a new full-reference method, called WAE-IQA, which weights the local differences between an interpolated image and its ground truth.

Vorschaubild nicht verfügbar
Veröffentlichung

Visual Quality Assessment for Motion Compensated Frame Interpolation

2019, Men, Hui, Lin, Hanhe, Hosu, Vlad, Maurer, Daniel, Bruhn, Andres, Saupe, Dietmar

Current benchmarks for optical flow algorithms evaluate the estimation quality by comparing their predicted flow field with the ground truth, and additionally may compare interpolated frames, based on these predictions, with the correct frames from the actual image sequences. For the latter comparisons, objective measures such as mean square errors are applied. However, for applications like image interpolation, the expected user's quality of experience cannot be fully deduced from such simple quality measures. Therefore, we conducted a subjective quality assessment study by crowdsourcing for the interpolated images provided in one of the optical flow benchmarks, the Middlebury benchmark. We used paired comparisons with forced choice and reconstructed absolute quality scale values according to Thurstone's model using the classical least squares method. The results give rise to a re-ranking of 141 participating algorithms w.r.t. visual quality of interpolated frames mostly based on optical flow estimation. Our re-ranking result shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks.

Lade...
Vorschaubild
Veröffentlichung

The Konstanz natural video database (KoNViD-1k)

2017, Hosu, Vlad, Hahn, Franz, Jenadeleh, Mohsen, Lin, Hanhe, Men, Hui, Sziranyi, Tamas, Li, Shujun, Saupe, Dietmar

Subjective video quality assessment (VQA) strongly depends on semantics, context, and the types of visual distortions. Currently, all existing VQA databases include only a small num- ber of video sequences with artificial distortions. The development and evaluation of objective quality assessment methods would benefit from having larger datasets of real-world video sequences with corresponding subjective mean opinion scores (MOS), in particular for deep learning purposes. In addition, the training and validation of any VQA method intended to be ‘general purpose’ requires a large dataset of video sequences that are representative of the whole spectrum of available video content and all types of distortions. We report our work on KoNViD-1k, a subjectively annotated VQA database consisting of 1,200 public- domain video sequences, fairly sampled from a large public video dataset, YFCC100m. We present the challenges and choices we have made in creating such a database aimed at ‘in the wild’ authentic distortions, depicting a wide variety of content.