Saupe, Dietmar
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse Publikationen
Large-scale crowdsourced subjective assessment of picturewise just noticeable difference
2022, Lin, Hanhe, Chen, Guangan, Jenadeleh, Mohsen, Hosu, Vlad, Reips, Ulf-Dietrich, Hamzaoui, Raouf, Saupe, Dietmar
The picturewise just noticeable difference (PJND) for a given image, compression scheme, and subject is the smallest distortion level that the subject can perceive when the image is compressed with this compression scheme. The PJND can be used to determine the compression level at which a given proportion of the population does not notice any distortion in the compressed image. To obtain accurate and diverse results, the PJND must be determined for a large number of subjects and images. This is particularly important when experimental PJND data are used to train deep learning models that can predict a probability distribution model of the PJND for a new image. To date, such subjective studies have been carried out in laboratory environments. However, the number of participants and images in all existing PJND studies is very small because of the challenges involved in setting up laboratory experiments. To address this limitation, we develop a framework to conduct PJND assessments via crowdsourcing. We use a new technique based on slider adjustment and a flicker test to determine the PJND. A pilot study demonstrated that our technique could decrease the study duration by 50% and double the perceptual sensitivity compared to the standard binary search approach that successively compares a test image side by side with its reference image. Our framework includes a robust and systematic scheme to ensure the reliability of the crowdsourced results. Using 1,008 source images and distorted versions obtained with JPEG and BPG compression, we apply our crowdsourcing framework to build the largest PJND dataset, KonJND-1k (Konstanz just noticeable difference 1k dataset). A total of 503 workers participated in the study, yielding 61,030 PJND samples that resulted in an average of 42 samples per source image. The KonJND-1k dataset is available at http://database.mmsp-kn.de/konjnd-1k-database.html.
Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition
2020-03, Jenadeleh, Mohsen, Pedersen, Marius, Saupe, Dietmar
Image quality is a key issue affecting the performance of biometric systems. Ensuring the quality of iris images acquired in unconstrained imaging conditions in visible light poses many challenges to iris recognition systems. Poor-quality iris images increase the false rejection rate and decrease the performance of the systems by quality filtering. Methods that can accurately predict iris image quality can improve the efficiency of quality-control protocols in iris recognition systems. We propose a fast blind/no-reference metric for predicting iris image quality. The proposed metric is based on statistical features of the sign and the magnitude of local image intensities. The experiments, conducted with a reference iris recognition system and three datasets of iris images acquired in visible light, showed that the quality of iris images strongly affects the recognition performance and is highly correlated with the iris matching scores. Rejecting poor-quality iris images improved the performance of the iris recognition system. In addition, we analyzed the effect of iris image quality on the accuracy of the iris segmentation module in the iris recognition system.
Subjective Assessment of Global Picture-Wise Just Noticeable Difference
2020-07, Lin, Hanhe, Jenadeleh, Mohsen, Chen, Guangan, Reips, Ulf-Dietrich, Hamzaoui, Raouf, Saupe, Dietmar
The picture-wise just noticeable difference (PJND) for a given image and a compression scheme is a statistical quantity giving the smallest distortion that a subject can perceive when the image is compressed with the compression scheme. The PJND is determined with subjective assessment tests for a sample of subjects. We introduce and apply two methods of adjustment where the subject interactively selects the distortion level at the PJND using either a slider or keystrokes. We compare the results and times required to those of the adaptive binary search type approach, in which image pairs with distortions that bracket the PJND are displayed and the difference in distortion levels is reduced until the PJND is identified. For the three methods, two images are compared using the flicker test in which the displayed images alternate at a frequency of 8 Hz. Unlike previous work, our goal is a global one, determining the PJND not only for the original pristine image but also for a sequence of compressed versions. Results for the MCL-JCI dataset show that the PJND measurements based on adjustment are comparable with those of the traditional approach using binary search, yet significantly faster. Moreover, we conducted a crowdsourcing study with side-byside comparisons and forced choice, which suggests that the flicker test is more sensitive than a side-by-side comparison.