Saupe, Dietmar

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Saupe
Vorname
Dietmar
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 4 von 4
Lade...
Vorschaubild
Veröffentlichung

Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study

2022, Lin, Hanhe, Men, Hui, Yan, Yijun, Ren, Jinchang, Saupe, Dietmar

Underwater image enhancement (UIE) is essential for a high-quality underwater optical imaging system. While a number of UIE algorithms have been proposed in recent years, there is little study on image quality assessment (IQA) of enhanced underwater images. In this paper, we conduct the first crowdsourced subjective IQA study on enhanced underwater images. We chose ten state-of-the-art UIE algorithms and applied them to yield enhanced images from an underwater image benchmark. Their latent quality scales were reconstructed from pair comparison. We demonstrate that the existing IQA metrics are not suitable for assessing the perceived quality of enhanced underwater images. In addition, the overall performance of 10 UIE algorithms on the benchmark is ranked by the newly proposed simulated pair comparison of the methods.

Lade...
Vorschaubild
Veröffentlichung

Visual Quality Assessment for Interpolated Slow-motion Videos based on a Novel Database

2020, Men, Hui, Hosu, Vlad, Lin, Hanhe, Bruhn, Andres, Saupe, Dietmar

Professional video editing tools can generate slow-motion video by interpolating frames from video recorded at a standard frame rate. Thereby the perceptual quality of such interpolated slow-motion videos strongly depends on the underlying interpolation techniques. We built a novel benchmark database that is specifically tailored for interpolated slow-motion videos (KoSMo-1k). It consists of 1,350 interpolated video sequences, from 30 different content sources, along with their subjective quality ratings from up to ten subjective comparisons per video pair. Moreover, we evaluated the performance of twelve existing full-reference (FR) image/video quality assessment (I/VQA) methods on the benchmark. In this way, we are able to show that specifically tailored quality assessment methods for interpolated slow-motion videos are needed, since the evaluated methods - despite their good performance on real-time video databases - do not give satisfying results when it comes to frame interpolation.

Lade...
Vorschaubild
Veröffentlichung

Subjective Image Quality Assessment With Boosted Triplet Comparisons

2021, Men, Hui, Lin, Hanhe, Jenadeleh, Mohsen, Saupe, Dietmar

Lade...
Vorschaubild
Veröffentlichung

Subjective annotation for a frame interpolation benchmark using artefact amplification

2020-12, Men, Hui, Hosu, Vlad, Lin, Hanhe, Bruhn, Andrés, Saupe, Dietmar

Current benchmarks for optical flow algorithms evaluate the estimation either directly by comparing the predicted flow fields with the ground truth or indirectly by using the predicted flow fields for frame interpolation and then comparing the interpolated frames with the actual frames. In the latter case, objective quality measures such as the mean squared error are typically employed. However, it is well known that for image quality assessment, the actual quality experienced by the user cannot be fully deduced from such simple measures. Hence, we conducted a subjective quality assessment crowdscouring study for the interpolated frames provided by one of the optical flow benchmarks, the Middlebury benchmark. It contains interpolated frames from 155 methods applied to each of 8 contents. For this purpose, we collected forced-choice paired comparisons between interpolated images and corresponding ground truth. To increase the sensitivity of observers when judging minute difference in paired comparisons we introduced a new method to the field of full-reference quality assessment, called artefact amplification. From the crowdsourcing data (3720 comparisons of 20 votes each) we reconstructed absolute quality scale values according to Thurstone’s model. As a result, we obtained a re-ranking of the 155 participating algorithms w.r.t. the visual quality of the interpolated frames. This re-ranking not only shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks, the results also provide the ground truth for designing novel image quality assessment (IQA) methods dedicated to perceptual quality of interpolated images. As a first step, we proposed such a new full-reference method, called WAE-IQA, which weights the local differences between an interpolated image and its ground truth.