Polster, David
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse Publikationen
Entropy and kinetics of point defects in two-dimensional dipolar crystals
2015, Lechner, Wolfgang, Polster, David, Maret, Georg, Dellago, Christoph, Keim, Peter
We study in experiment and with computer simulation the free energy and the kinetics of vacancy and interstitial defects in two-dimensional dipolar crystals. The defects appear in different local topologies, which we characterize by their point group symmetry; Cn is the n-fold cyclic group and Dn is the dihedral group, including reflections. The frequency of different local topologies is not determined by their almost degenerate energies but is dominated by entropy for symmetric configurations. The kinetics of the defects is fully reproduced by a master equation in a multistate Markov model. In this model, the system is described by the state of the defect and the time evolution is given by transitions occurring with particular rates. These transition rate constants are extracted from experiments and simulations using an optimization procedure. The good agreement between experiment, simulation, and master equation thus provides evidence for the accuracy of the model.
Wechselwirkung zwischen Gitterdefekten in zweidimensionalen kolloiden Systemen
2014, Polster, David
In der hier vorliegenden Arbeit wurden in einem zweidimensionalen Kristall die Mobilität und Topologie geometrischer Defekte und ihre Verzerrungsfelder im Kristall untersucht, sowie mehrere gleichartige Defekte erzeugt und die Wechselwirkung dieser untereinander analysiert. Dazu wurde zunächst ein Messaufbau, wie er bereits in früheren Arbeiten verwendet wurde, soweit modifiziert, dass neben der Erzeugung zweidimensionaler Kristalle auch die Manipulation dieser (Erzeugung von Gitterdefekten: Vacancies, Interstitials) mittels einer optischen Pinzette (fokussierter, beweglicher Laserstrahl), über einen viele Millimeter großen Bereich, möglich war. Die Manipulation und die anschließende Relaxation des umgebenden Gitters wurden mit Hilfe von Videomikroskopie aufgezeichnet.
Aus über 107000 abgespeicherten Datensätzen von Partikelpositionen wurde eine Häufigkeitsverteilung aller beobachteten Defektkonfigurationen, welche die Antworten des Kristallgitters auf die erzeugten geometrischen Defekte darstellen, erstellt. Detaillierte Analysen der Defektkonfigurationen haben neuartige, zuvor noch nicht in der Literatur beschriebene Konfigurationen geliefert. Für diese und die bereits bekannten Defektkonfigurationen wurde in der hier vorliegenden Arbeit eine neue Nomenklatur entwickelt, welche auf der Nomenklatur zweidimensionaler Punktgruppen basiert. Eine direkte Abhängigkeit der zweidimensionalen Grenzfläche (Wasser-Luft oder Glas) auf die Häufigkeitsverteilung der Defektkonfiguration konnte ausgeschlossen werden, wobei allerdings leichte Scherungen des Systems implizit einen Einfluss auf die Häufigkeitsverteilung haben.
Um die Häufigkeitsverteilung der Defektkonfigurationen genauer zu verstehen und letztendlich zu erklären, wurden die zur Herstellung der Konfigurationen nötigen Inneren Energien aus der Gittersumme über das Paarpotential ermittelt. Für die Energien der Vacancies und Interstitials ergab sich, dass die Vacancies immer eine höhere Energie als die Interstitials aufweisen, wie es bereits in einer früheren Arbeit beschrieben wurde. Es konnte gezeigt werden, dass die Innere Energie der Defekte nicht hinreichend ist, um deren Häufigkeitsverteilung zu erklären, sondern entropische Argumente hinzuzuziehen sind. Weiterführend wurden die Umwandlungswahrscheinlichkeiten zwischen den einzelnen Defektkonfigurationen untersucht und dabei detailliert erklärt, welche Umwandlungen möglich sind und diese immer über die Erzeugung oder Vernichtung relativ langlebiger 'quasi' virtueller Dislokationspaare ablaufen.
Durch Auswertung der Defekt-Trajektorien wurden die Diffusionskonstanten der Defekte ermittelt. Dabei zeigt sich, dass die Diffusion auf einer festen Grenzfläche geringer ist als bei einer Wasser-Luft-Grenzfläche. Dass sich dies auf die kollektive komplexe Partikeldynamik bei der Diffusion eines Defekts übertragen lässt, wurde vor der hier vorliegenden Arbeit noch nicht gezeigt.
Durch eine Analyse einer Häufigkeitsverteilung wurde fortführend untersucht, ob die Anwesenheit eines Defekts dazu führt, dass sich mehr virtuelle Dislokationspaare in der Nähe des Defekts ausbilden. Dies konnte bestätigt werden, wobei der Einfluss in Systemen mit größerer Scherung durch die Scherung leicht überdeckt wird.
In dem weiteren Verlauf der Arbeit wurde untersucht, wie mehrere gleichartige geometrische Defekte miteinander wechselwirken. Dabei konnte gezeigt werden, dass auch gleichartige Defekte, wie mehrere Vacancies bzw. mehrere Interstitials, eine attraktive Wechselwirkung aufweisen, welche anisotrop ist und bewirkt, dass die gleichartigen Defekte zu sogenannten Defektketten aggregieren, welche letztlich in zwei gebunden Dislokationen mit antiparallelen Burgersvektoren zerfallen. Aus den Trajektorien der Defektketten konnten die Diffusionskonstanten ermittelt werden.
Abschließend wurden die Wechselwirkungsenergien (Wechselwirkungs-Hamiltonian) zwischen den Dislokationen der Defektketten über die Verteilung der Abstandswahrscheinlichkeit der Dislokationen zueinander bestimmt und mit den Vorhersagen der Elastizitätstheorie verglichen. Während die Elastizitätstheorie Defektketten mittlerer Länge genau beschreibt, gibt es Unterschiede für kleinere und größere Ketten, die auf nichtlineare Wechselwirkung zwischen den Dislokationen bzw. diskrete Gitterdefekte schließen lassen.
Self-organized defect strings in two-dimensional crystals
2013, Lechner, Wolfgang, Polster, David, Maret, Georg, Keim, Peter, Dellago, Christoph
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.