Legler, Daniel F.

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Legler
Vorname
Daniel F.
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 100
Vorschaubild nicht verfügbar
Veröffentlichung

Naïve T lymphocytes chemotax long distance to CCL21 but not to a source of bioactive S1P

2023-08, Garcia-Seyda, Nicolas, Song, Solene, Seveau de Noray, Valentine, David-Broglio, Luc, Matti, Christoph, Artinger, Marc, Dupuy, Florian, Biarnes-Pelicot, Martine, Legler, Daniel F., Theodoly, Olivier

Naïve T lymphocytes traffic through the organism in search for antigen, alternating between blood and secondary lymphoid organs. Lymphocyte homing to lymph nodes relies on CCL21 chemokine sensing by CCR7 receptors, while exit into efferent lymphatics relies on sphingolipid S1P sensing by S1PR1 receptors. While both molecules are claimed chemotactic, a quantitative analysis of naïve T lymphocyte migration along defined gradients is missing. Here, we used a reductionist approach to study the real-time single-cell response of naïve T lymphocytes to CCL21 and serum rich in bioactive S1P. Using microfluidic and micropatterning ad hoc tools, we show that CCL21 triggers stable polarization and long-range chemotaxis of cells, whereas S1P-rich serum triggers a transient polarization only and no significant displacement, potentially representing a brief transmigration step through exit portals. Our in vitro data thus suggest that naïve T lymphocyte chemotax long distances to CCL21 but not towards a source of bioactive S1P.

Lade...
Vorschaubild
Veröffentlichung

Heparin Specifically Interacts with Basic BBXB Motifs of the Chemokine CCL21 to Define CCR7 Signaling

2023-01-14, Artinger, Marc, Gerken, Oliver J., Legler, Daniel F.

Chemokines are critically involved in controlling directed leukocyte migration. Spatiotemporal secretion together with local retention processes establish and maintain local chemokine gradients that guide directional cell migration. Extracellular matrix proteins, particularly glycosaminoglycans (GAGs), locally retain chemokines through electrochemical interactions. The two chemokines CCL19 and CCL21 guide CCR7-expressing leukocytes, such as antigen-bearing dendritic cells and T lymphocytes, to draining lymph nodes to initiate adaptive immune responses. CCL21—in contrast to CCL19—is characterized by a unique extended C-terminus composed of highly charged residues to facilitate interactions with GAGs. Notably, both chemokines can trigger common, but also ligand-biased signaling through the same receptor. The underlying molecular mechanism of ligand-biased CCR7 signaling is poorly understood. Using a series of naturally occurring chemokine variants in combination with newly designed site-specific chemokine mutants, we herein assessed CCR7 signaling, as well as GAG interactions. We demonstrate that the charged chemokine C-terminus does not fully confer CCL21-biased CCR7 signaling. Besides the positively charged C-terminus, CCL21 also possesses specific BBXB motifs comprising basic amino acids. We show that CCL21 variants where individual BBXB motifs are mutated retain their capability to trigger G-protein-dependent CCR7 signaling, but lose their ability to interact with heparin. Moreover, we show that heparin specifically interacts with CCL21, but not with CCL19, and thereby competes with ligand-binding to CCR7 and prevents signaling. Hence, we provide evidence that soluble heparin, but not the other GAGs, complexes with CCL21 to define CCR7 signaling in a ligand-dependent manner.

Lade...
Vorschaubild
Veröffentlichung

Shifting CCR7 towards Its Monomeric Form Augments CCL19 Binding and Uptake

2022-05, Gerken, Oliver J., Artinger, Marc, Legler, Daniel F.

The chemokine receptor CCR7, together with its ligands, is responsible for the migration and positioning of adaptive immune cells, and hence critical for launching adaptive immune responses. CCR7 is also induced on certain cancer cells and contributes to metastasis formation. Thus, CCR7 expression and signalling must be tightly regulated for proper function. CCR7, like many other members of the G-protein coupled receptor superfamily, can form homodimers and oligomers. Notably, danger signals associated with pathogen encounter promote oligomerisation of CCR7 and is considered as one layer of regulating its function. Here, we assessed the dimerisation of human CCR7 and several single point mutations using split-luciferase complementation assays. We demonstrate that dimerisation-defective CCR7 mutants can be transported to the cell surface and elicit normal chemokine-driven G-protein activation. By contrast, we discovered that CCR7 mutants whose expression are shifted towards monomers significantly augment their capacities to bind and internalise fluorescently labelled CCL19. Modeling of the receptor suggests that dimerisation-defective CCR7 mutants render the extracellular loops more flexible and less structured, such that the chemokine recognition site located in the binding pocket might become more accessible to its ligand. Overall, we provide new insights into how the dimerisation state of CCR7 affects CCL19 binding and receptor trafficking.

Lade...
Vorschaubild
Veröffentlichung

Rapid increase in transferrin receptor recycling promotes adhesion during T cell activation

2022, Rossatti, Pascal, Redpath, Gregory M. I., Ziegler, Luca, Samson, Guerric P. B., Clamagirand, Camille D., Legler, Daniel F., Rossy, Jérémie

Background
T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear.

Results
Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells.

Conclusions
Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells.

Lade...
Vorschaubild
Veröffentlichung

GPR182 is a broadly scavenging atypical chemokine receptor influencing T-independent immunity

2023-07-24, Melgrati, Serena, Gerken, Oliver J., Artinger, Marc, Radice, Egle, Szpakowska, Martyna, Chevigné, Andy, D’Uonnolo, Giulia, Antonello, Paola, Legler, Daniel F., Thelen, Marcus

Immune responses highly depend on the effective trafficking of immune cells into and within secondary lymphoid organs (SLOs). Atypical chemokine receptors (ACKRs) scavenge chemokines to eliminate them from the extracellular space, thereby generating gradients that guide leukocytes. In contrast to canonical chemokine receptors, ACKRs do not induce classical intracellular signaling that results in cell migration. Recently, the closest relative of ACKR3, GPR182, has been partially deorphanized as a potential novel ACKR. We confirm and extend previous studies by identifying further ligands that classify GPR182 as a broadly scavenging chemokine receptor. We validate the “atypical” nature of the receptor, wherein canonical G-protein-dependent intracellular signaling is not activated following ligand stimulation. However, β-arrestins are required for ligand-independent internalization and chemokine scavenging whereas the C-terminus is in part dispensable. In the absence of GPR182 in vivo , we observed elevated chemokine levels in the serum but also in SLO interstitium. We also reveal that CXCL13 and CCL28, which do not bind any other ACKR, are bound and efficiently scavenged by GPR182. Moreover, we found a cooperative relationship between GPR182 and ACKR3 in regulating serum CXCL12 levels, and between GPR182 and ACKR4 in controlling CCL20 levels. Furthermore, we unveil a new phenotype in GPR182-KO mice, in which we observed a reduced marginal zone (MZ), both in size and in cellularity, and thus in the T-independent antibody response. Taken together, we and others have unveiled a novel, broadly scavenging chemokine receptor, which we propose should be named ACKR5.

Lade...
Vorschaubild
Veröffentlichung

New pairings and deorphanization among the atypical chemokine receptor family : physiological and clinical relevance

2023, Szpakowska, Martyna, D’Uonnolo, Giulia, Luís, Rafael, Alonso Bartolomé, Ana, Thelen, Marcus, Legler, Daniel F., Chevigné, Andy

Atypical chemokine receptors (ACKRs) form a small subfamily of receptors (ACKR1–4) unable to trigger G protein-dependent signaling in response to their ligands. They do, however, play a crucial regulatory role in chemokine biology by capturing, scavenging or transporting chemokines, thereby regulating their availability and signaling through classical chemokine receptors. ACKRs add thus another layer of complexity to the intricate chemokine–receptor interaction network. Recently, targeted approaches and screening programs aiming at reassessing chemokine activity towards ACKRs identified several new pairings such as the dimeric CXCL12 with ACKR1, CXCL2, CXCL10 and CCL26 with ACKR2, the viral broad-spectrum chemokine vCCL2/vMIP-II, a range of opioid peptides and PAMP-12 with ACKR3 as well as CCL20 and CCL22 with ACKR4. Moreover, GPR182 (ACKR5) has been lately proposed as a new promiscuous atypical chemokine receptor with scavenging activity notably towards CXCL9, CXCL10, CXCL12 and CXCL13. Altogether, these findings reveal new degrees of complexity of the chemokine network and expand the panel of ACKR ligands and regulatory functions. In this minireview, we present and discuss these new pairings, their physiological and clinical relevance as well as the opportunities they open for targeting ACKRs in innovative therapeutic strategies.

Lade...
Vorschaubild
Veröffentlichung

Delineating the interactions between the cannabinoid CB2 receptor and its regulatory effectors; β-arrestins and G protein-coupled receptor kinases

2022-05, Patel, Monica, Matti, Christoph, Grimsey, Natasha L., Legler, Daniel F., Javitch, Jonathan A., Finlay, David B., Glass, Michelle

Background and Purpose
The cannabinoid CB2 receptor (CB2) is a promising therapeutic target for modulating inflammation. However, little is known surrounding the mechanisms underpinning CB2 desensitisation and regulation, particularly the role of G protein-coupled receptor kinases (GRKs). Here, we evaluated the role of six GRK isoforms in β-arrestin recruitment to CB2. Mutagenesis of several distal C-terminal aspartic acid residues was also performed in an attempt to delineate additional structural elements involved in the regulation of CB2.

Experimental Approach
In CB2-expressing HEK 293 cells, β-arrestin translocation was measured using real-time BRET assays. G protein dissociation BRET assays were performed to assess the activation and desensitisation of CB2 in the presence of β-arrestin 2.

Key Results
Overexpression of GRK isoforms 1-6 failed to considerably improve translocation of either β-arrestin 1 or β-arrestin 2 to CB2. Consistent with this, inhibition of endogenous GRK2/3 did not substantially reduce β-arrestin 2 translocation. Mutagenesis of C-terminal aspartic acid residues resulted in attenuation of β-arrestin 2 translocation, which translated to a reduction in desensitisation of G protein activation.

Conclusion and Implications
Our findings suggest that CB2 does not adhere to the classical GPCR regulatory paradigm, entailing GRK- and β-arrestin-mediated desensitisation. Instead, C-terminal aspartic acid residues may act as phospho-mimics to induce β-arrestin activation. This study provides novel insights into the regulatory mechanisms of CB2, which may aid in our understanding of drug tolerance and dependence.

Lade...
Vorschaubild
Veröffentlichung

Reassessing the adrenomedullin scavenging function of ACKR3 in lymphatic endothelial cells

2023-05-30, Sigmund, Elena C., Bauer, Aline, Jakobs, Barbara D., Tatliadim, Hazal, Tacconi, Carlotta, Thelen, Marcus, Legler, Daniel F., Halin, Cornelia

Atypical chemokine receptor 3 (ACKR3) is a scavenger of the chemokines CXCL11 and CXCL12 and of several opioid peptides. Additional evidence indicates that ACKR3 binds two other non-chemokine ligands, namely the peptide hormone adrenomedullin (AM) and derivatives of the proadrenomedullin N-terminal 20 peptide (PAMP). AM exhibits multiple functions in the cardiovascular system and is essential for embryonic lymphangiogenesis in mice. Interestingly, AM-overexpressing and ACKR3-deficient mouse embryos both display lymphatic hyperplasia. Moreover, in vitro evidence suggested that lymphatic endothelial cells (LECs), which express ACKR3, scavenge AM and thereby reduce AM-induced lymphangiogenic responses. Together, these observations have led to the conclusion that ACKR3-mediated AM scavenging by LECs serves to prevent overshooting AM-induced lymphangiogenesis and lymphatic hyperplasia. Here, we further investigated AM scavenging by ACKR3 in HEK293 cells and in human primary dermal LECs obtained from three different sources in vitro . LECs efficiently bound and scavenged fluorescent CXCL12 or a CXCL11/12 chimeric chemokine in an ACKR3-dependent manner. Conversely, addition of AM induced LEC proliferation but AM internalization was found to be independent of ACKR3. Similarly, ectopic expression of ACKR3 in HEK293 cells did not result in AM internalization, but the latter was avidly induced upon co-transfecting HEK293 cells with the canonical AM receptors, consisting of calcitonin receptor-like receptor (CALCRL) and receptor activity-modifying protein (RAMP)2 or RAMP3. Together, these findings indicate that ACKR3-dependent scavenging of AM by human LECs does not occur at ligand concentrations sufficient to trigger AM-induced responses mediated by canonical AM receptors.

Lade...
Vorschaubild
Veröffentlichung

Distinct Fates of Chemokine and Surrogate Molecule Gradients : Consequences for CCR7-Guided Dendritic Cell Migration

2022-06-13, Artinger, Marc, Gerken, Oliver J., Purvanov, Vladimir, Legler, Daniel F.

Chemokine-guided leukocyte migration is a hallmark of the immune system to cope with invading pathogens. Intruder confronted dendritic cells (DCs) induce the expression of the chemokine receptor CCR7, which enables them to sense and migrate along chemokine gradients to home to draining lymph nodes, where they launch an adaptive immune response. Chemokine-mediated DC migration is recapitulated and intensively studied in 3D matrix migration chambers. A major caveat in the field is that chemokine gradient formation and maintenance in such 3D environments is generally not assessed. Instead, fluorescent probes, mostly labelled dextran, are used as surrogate molecules, thereby neglecting important electrochemical properties of the chemokines. Here, we used site-specifically, fluorescently labelled CCL19 and CCL21 to study the establishment and shape of the chemokine gradients over time in the 3D collagen matrix. We demonstrate that CCL19 and particularly CCL21 establish stable, but short-distance spanning gradients with an exponential decay-like shape. By contrast, dextran with its neutral surface charge forms a nearly linear gradient across the entire matrix. We show that the charged C-terminal tail of CCL21, known to interact with extracellular matrix proteins, is determinant for shaping the chemokine gradient. Importantly, DCs sense differences in the shape of CCL19 and CCL21 gradients, resulting in distinct spatial migratory responses.

Lade...
Vorschaubild
Veröffentlichung

Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de-adhesion and passive transport by flow in inflamed afferent lymphatics

2022-02-01, Friess, Mona C., Kritikos, Ioannis, Schineis, Philipp, Medina-Sanchez, Jessica Danielly, Gkountidi, Anastasia-Olga, Vallone, Angela, Sigmund, Elena C., Matti, Christoph, Legler, Daniel F., Halin, Cornelia

T cell migration via afferent lymphatics to draining lymph nodes (dLNs) depends on expression of CCR7 in T cells and CCL21 in the lymphatic vasculature. Once T cells have entered lymphatic capillaries, they slowly migrate into contracting collecting vessels. Here, lymph flow picks up, inducing T cell detachment and rapid transport to the dLNs. We find that the atypical chemokine receptor 4 (ACKR4), which binds and internalizes CCL19 and CCL21, is induced by lymph flow in endothelial cells lining lymphatic collectors, enabling them to scavenge these chemokines. In the absence of ACKR4, migration of T cells to dLNs in TPA-induced inflammation is significantly reduced. While entry into capillaries is not impaired, T cells accumulate in the ACKR4-deficient dermal collecting vessel segments. Overall, our findings identify an ACKR4-mediated mechanism by which lymphatic collectors facilitate the detachment of lymph-borne T cells in inflammation and their transition from crawling to free-flow toward the dLNs.