Pallocca, Giorgia
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse Publikationen
G × E interactions as a basis for toxicological uncertainty
2023-06-01, Suciu, Ilinca, Pamies, David, Peruzzo, Roberta, Wirtz, Petra H., Pallocca, Giorgia, Hauck, Christof R., Brunner, Thomas, Hartung, Thomas, Amelio, Ivano, Leist, Marcel
To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G  ×  E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G  ×  E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of “genetic” influence needs a more precise definition. What is usually meant by this term in the context of G  ×  E are the protein functions encoded by the genes. Besides the g ene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present “ g ene expression” influences is summarized here as G e . Also, the concept of “environment” needs some re-consideration in situations where exposure timing (E t ) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects G e . This implies that it changes the model system. The interaction of G e with E t might be denoted as G e  ×  E t . We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM).
On the usefulness of animals as a model system (part II) : Considering benefits within distinct use domains
2022, Pallocca, Giorgia, Leist, Marcel
In many countries, animal experiments can only be performed when their necessity has been demonstrated in a legal document. As the usefulness of animals in research is also a significant societal and political issue, criteria to structure debates and evaluations are needed. Here, background information is given on laboratory animal studies. Moreover, parameters that may be considered in judging their usefulness are suggested. The discussion is strictly focused on animals used as tools/test systems/models to provide information on humans. In this context, general features and performance characteristics of models are discussed. Examples are given for well-recognized criteria (e.g., robustness, relevance, predictivity) to judge the usefulness of predictive models. The main hypothesis put forward here is that a benefits evaluation (usefulness metrics) is only possible within sharply circumscribed "use domains". Examples are given for the research fields of drug and vaccine research, toxicology, disease pathogenesis, and basic biological research. Efficacy, safety, and quality studies are highlighted as "use domains" within the field of drug discovery and production. A further separation into individual diseases, drug targets or symptoms is suggested for, e.g., efficacy studies or pathophysiology. Finally, an outlook is given on the evaluation of model advantages and disadvantages to arrive at their "net benefit". Moreover, the need to compare the net benefits of animal models versus that of their alternatives is highlighted.
Setting the stage for next-generation risk assessment with non-animal approaches : the EU-ToxRisk project experience
2020-10, Moné, Martijn J., Pallocca, Giorgia, Escher, Sylvia E., Exner, Thomas E., Herzler, Matthias, Bennekou, Susanne Hougaard, Kamp, Hennicke, Kroese, E. Dinant, Leist, Marcel, Steger-Hartmann, Thomas
In 2016, the European Commission launched the EU-ToxRisk research project to develop and promote animal-free approaches in toxicology. The 36 partners of this consortium used in vitro and in silico methods in the context of case studies (CSs). These CSs included both compounds with a highly defined target (e.g. mitochondrial respiratory chain inhibitors) as well as compounds with poorly defined molecular initiation events (e.g. short-chain branched carboxylic acids). The initial project focus was on developing a science-based strategy for read-across (RAx) as an animal-free approach in chemical risk assessment. Moreover, seamless incorporation of new approach method (NAM) data into this process (= NAM-enhanced RAx) was explored. Here, the EU-ToxRisk consortium has collated its scientific and regulatory learnings from this particular project objective. For all CSs, a mechanistic hypothesis (in the form of an adverse outcome pathway) guided the safety evaluation. ADME data were generated from NAMs and used for comprehensive physiological-based kinetic modelling. Quality assurance and data management were optimized in parallel. Scientific and Regulatory Advisory Boards played a vital role in assessing the practical applicability of the new approaches. In a next step, external stakeholders evaluated the usefulness of NAMs in the context of RAx CSs for regulatory acceptance. For instance, the CSs were included in the OECD CS portfolio for the Integrated Approach to Testing and Assessment project. Feedback from regulators and other stakeholders was collected at several stages. Future chemical safety science projects can draw from this experience to implement systems toxicology-guided, animal-free next-generation risk assessment.
Internationalization of read-across as a validated new approach method (NAM) for regulatory toxicology
2020, Rovida, Costanza, Barton-Maclaren, Tara, Benfenati, Emilio, Caloni, Francesca, Chandrasekera, Charu, Dietrich, Daniel R., Kisitu, Jaffar, Leist, Marcel, Pallocca, Giorgia, Hartung, Thomas
Read-across (RAx) translates available information from well-characterized chemicals to the substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g. EU-REACH) already allow this procedure to be used to waive new in vivo tests. The decision to prepare a review on the state of the art of RAx as a tool for risk assessment for regulatory purposes was taken during a workshop with international experts in Ranco, Italy in July 2018. Three major issues were identified that need optimisation to allow a higher regulatory acceptance rate of the RAx procedure: (i) the definition of similarity of source and target, (ii) the translation of biological/toxicological activity of source to target, in the RAx procedure, and (iii) how to deal with issues of ADME that may differ between source and target. The use of new approach methodologies (NAM) was discussed as one of the most important innovations to improve the acceptability of RAx. At present, NAM data may be used to confirm chemical and toxicological similarity. In the future, the use of NAM may be broadened to fully characterize the hazard and toxicokinetic properties of RAx compounds. Concerning available guidance, documents on Good Read-Across Practice (GRAP) and on best practices to perform and evaluate the RAx process were identified. Here, in particular the RAx guidance, being worked out by the European Commission’s H2020 project EU-ToxRisk, together with many external partners with regulatory experience, is given.
The Current Status and Work of Three Rs Centres and Platforms in Europe
2022-11, Neuhaus, Winfried, Reininger-Gutmann, Birgit, Rinner, Beate, Plasenzotti, Roberto, Wilflingseder, Doris, De Kock, Joery, Hartung, Thomas, Pallocca, Giorgia, Rovida, Costanza, Leist, Marcel
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general.
Next-generation risk assessment of chemicals - Rolling out a human-centric testing strategy to drive 3R implementation : The RISK-HUNT3R project perspective
2022, Pallocca, Giorgia, Moné, Martijn J., Kamp, Hennicke, Luijten, Mirjam, Van de Water, Bob, Leist, Marcel
In many industrial sectors, there is a need for reliable ways to evaluate the safety of chemicals with methods anchored to human biology and pathology. For this purpose, many animal-free new approach methods (NAMs) have been developed and implemented in various stages of risk assessment. Now it is time to assemble individual NAMs into a comprehensive next-generation risk assessment (NGRA) strategy. The European Horizon 2020 RISK-HUNT3R project ("Risk assessment of chemicals integrating human-centric next-generation testing strategies promoting the 3Rs") has been designed to promote a combination of computational toxicology, in vitro toxicology, and systems biology. It is assumed that this approach will lead to faster and more accurate risk assessment procedures. The RISK-HUNT3R NGRA strategy will be developed to address the implementation of a comprehensive NAM toolbox into the regulatory framework. Critical conceptual approaches of the project include i) the integration of human-relevant data on biotransformation and elimination, ii) the translation of high-content mode-of-action datasets into predictions of adverse outcomes, iii) development of quantitative adverse outcome pathways (qAOPs), and iv) quantification of uncertainties associated with the predictions based on NGRA strategies. Many of the project steps will be used iteratively to generate datasets with sufficient quality and certainty for NGRA. Scientists and regulators will work together on case studies to evaluate NAMs' practical applicability and the strategies to combine information therefrom. Here we delineate how the strategy will be deployed to establish an overall NGRA framework for chemicals, pesticides, food additives, and drugs.
The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods
2020-07, Krebs, Alice, van Vugt-Lussenburg, Barbara M. A., Waldmann, Tanja, Busquet, Francois, Dolde, Xenia, Holzer, Anna-Katharina, Kisitu, Jaffar, Pallocca, Giorgia, Rovida, Costanza, Leist, Marcel
Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
The Rise of Three Rs Centres and Platforms in Europe
2022-03, Neuhaus, Winfried, Reininger-Gutmann, Birgit, Rinner, Beate, Plasenzotti, Roberto, Wilflingseder, Doris, De Kock, Joery, Vanhaecke, Tamara, Hartung, Thomas, Pallocca, Giorgia, Leist, Marcel
Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general.
On the usefulness of animals as a model system (part I) : Overview of criteria and focus on robustness
2022, Pallocca, Giorgia, Rovida, Costanza, Leist, Marcel
Banning or reduction of the use of animals for laboratory experiments is a frequently-discussed societal and scientific issue. Moreover, the usefulness of animals needs to be considered in any decision process on the permission of specific animal studies. This complex issue is often simplified and generalized in the media around the question, "Are animals useful as a model?" To render an often emotional discussion about animal experimentation more rational, it is important to define "usefulness" in a structured and transparent way. To achieve such a goal, many sub-questions need to be asked, and the following aspects require clarification: (i) consistency of animal-derived data (robustness of the model system); (ii) scientific domain investigated (e.g., toxicology vs disease modelling vs therapy); (iii) measurement unit for "benefit" (inte-grating positive and negative aspects); (iv) benchmarking to alternatives; (v) definition of success criteria (how good is good enough); (vi) the procedure to assess benefit and necessity. This series of articles discusses the overall benchmarking process by specifying the six issues. The goal is to provide guidance on what needs to be clarified in scientific and political discussions. This framework should help in the future to structure available information, to identify and fill information gaps, and to arrive at rational decisions in various sub-fields of animal use. In part I of the series, we focus on the robustness of animal models. This describes the capacity of models to produce the same output/response when faced with the "same" input. Follow-up articles will cover the remaining usefulness aspects.
Harnessing the power of novel animal-free test methods for the development of COVID-19 drugs and vaccines
2020-06, Busquet, Francois, Hartung, Thomas, Pallocca, Giorgia, Rovida, Costanza, Leist, Marcel
The COVID-19-inducing virus, SARS-CoV2, is likely to remain a threat to human health unless efficient drugs or vaccines become available. Given the extent of the current pandemic (people in over one hundred countries infected) and its disastrous effect on world economy (associated with limitations of human rights), speedy drug discovery is critical. In this situation, past investments into the development of new (animal-free) approach methods (NAM) for drug safety, efficacy, and quality evaluation can be leveraged. For this, we provide an overview of repurposing ideas to shortcut drug development times. Animal-based testing would be too lengthy, and it largely fails, when a pathogen is species-specific or if the desired drug is based on specific features of human biology. Fortunately, industry has already largely shifted to NAM, and some public funding programs have advanced the development of animal-free technologies. For instance, NAM can predict genotoxicity (a major aspect of carcinogenicity) within days, human antibodies targeting virus epitopes can be generated in molecular biology laboratories within weeks, and various human cell-based organoids are available to test virus infectivity and the biological processes controlling them. The European Medicines Agency (EMA) has formed an expert group to pave the way for the use of such approaches for accelerated drug development. This situation illustrates the importance of diversification in drug discovery strategies and clearly shows the shortcomings of an approach that invests 95% of resources into a single technology (animal experimentation) in the face of challenges that require alternative approaches.