Schildknecht, Stefan

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Schildknecht
Vorname
Stefan
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 47
Vorschaubild nicht verfügbar
Veröffentlichung

Novel Proline Transporter Inhibitor (LQFM215) Presents Antipsychotic Effect in Ketamine Model of Schizophrenia

2023-09-09, Carvalho, Gustavo Almeida, Chiareli, Raphaela Almeida, Pedrazzi, João Francisco Cordeiro, Silva-Amaral, Danyelle, da Rocha, André Luís Batista, Oliveira-Lima, Onésia Cristina, Lião, Luciano Morais, Schildknecht, Stefan, Leist, Marcel, Pinto, Mauro Cunha Xavier

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as l-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.

Lade...
Vorschaubild
Veröffentlichung

Synuclein Family Members Prevent Membrane Damage by Counteracting α-Synuclein Aggregation

2021-08, Scheibe, Christian, Karreman, Christiaan, Schildknecht, Stefan, Leist, Marcel, Hauser, Karin

The 140 amino acid protein α-synuclein (αS) is an intrinsically disordered protein (IDP) with various roles and locations in healthy neurons that plays a key role in Parkinson’s disease (PD). Contact with biomembranes can lead to α-helical conformations, but can also act as s seeding event for aggregation and a predominant β-sheet conformation. In PD patients, αS is found to aggregate in various fibrillary structures, and the shift in aggregation and localization is associated with disease progression. Besides full-length αS, several related polypeptides are present in neurons. The role of many αS-related proteins in the aggregation of αS itself is not fully understood Two of these potential aggregation modifiers are the αS splicing variant αS Δexon3 (Δ3) and the paralog β-synuclein (βS). Here, polarized ATR-FTIR spectroscopy was used to study the membrane interaction of these proteins individually and in various combinations. The method allowed a continuous monitoring of both the lipid structure of biomimetic membranes and the aggregation state of αS and related proteins. The use of polarized light also revealed the orientation of secondary structure elements. While αS led to a destruction of the lipid membrane upon membrane-catalyzed aggregation, βS and Δ3 aggregated significantly less, and they did not harm the membrane. Moreover, the latter proteins reduced the membrane damage triggered by αS. There were no major differences in the membrane interaction for the different synuclein variants. In combination, these observations suggest that the formation of particular protein aggregates is the major driving force for αS-driven membrane damage. The misbalance of αS, βS, and Δ3 might therefore play a crucial role in neurodegenerative disease.

Lade...
Vorschaubild
Veröffentlichung

Reductive modification of genetically encoded 3-nitrotyrosine sites in alpha synuclein expressed in E.coli

2019-06, Gerding, Hanne R., Karreman, Christiaan, Daiber, Andreas, Delp, Johannes, Hammler, Daniel, Mex, Martin, Schildknecht, Stefan, Leist, Marcel

Tyrosine nitration is a post-translational protein modification relevant to various pathophysiological processes. Chemical nitration procedures have been used to generate and study nitrated proteins, but these methods regularly lead to modifications at other amino acid residues. A novel strategy employs a genetic code modification that allows incorporation of 3-nitrotyrosine (3-NT) during ribosomal protein synthesis to generate a recombinant protein with defined 3-NT-sites, in the absence of other post-translational modifications. This approach was applied to study the generation and stability of the 3-NT moiety in recombinant proteins produced in E.coli. Nitrated alpha-synuclein (ASYN) was selected as exemplary protein, relevant in Parkinson's disease (PD). A procedure was established to obtain pure tyrosine-modified ASYN in mg amounts. However, a rapid (t1/2 = 0.4 h) reduction of 3-NT to 3-aminotyrosine (3-AT) was observed. When screening for potential mechanisms, we found that 3-NT can be reduced enzymatically to 3-AT, whilst biologically relevant low molecular weight reductants, such as NADPH or GSH, did not affect 3-NT. A genetic screen for E.coli proteins, involved in the observed 3-NT reduction, revealed the contribution of several, possibly redundant pathways. Green fluorescent protein was studied as an alternative model protein. These data confirm 3-NT reduction as a broadly-relevant pathway in E.coli. In conclusion, incorporation of 3-NT as a genetically-encoded non-natural amino acid allows for generation of recombinant proteins with specific nitration sites. The potential reduction of the 3-NT moiety by E.coli, however, requires attention to the design of the purification strategy for obtaining pure nitrated protein.

Vorschaubild nicht verfügbar
Veröffentlichung

Increasing the Resistance of Living Cells against Oxidative Stress by Nonnatural Surfactants as Membrane Guards

2018-07-18, Kunkel, Marius, Schildknecht, Stefan, Boldt, Klaus, Zeyffert, Lukas, Schleheck, David, Leist, Marcel, Polarz, Sebastian

The importation of construction principles or even constituents from biology into materials science is a prevailing concept. Vice versa, the cellular level modification of living systems with nonnatural components is much more difficult to achieve. It has been done for analytical purposes, for example, imaging, to learn something about intracellular processes. Cases describing the improvement of a biological function by the integration of a nonnatural (nano)constituent are extremely rare. Because biological membranes contain some kind of a surfactant, for example, phospholipids, our idea is to modify cells with a newly synthesized surfactant. However, this surfactant is intended to possess an additional functionality, which is the reduction of oxidative stress. We report the synthesis of a surfactant with Janus-type head group architecture, a fullerene C60 modified by five alkyl chains on one side and an average of 20 oxygen species on the other hemisphere. It is demonstrated that the amphiphilic properties of the fullerenol surfactant are similar to that of lipids. Not only quenching of reactive oxygen species (superoxide, hydroxyl radicals, peroxynitrite, and hydrogen peroxide) was successful, but also the fullerenol surfactant exceeds benchmark antioxidant agents such as quercetin. The surfactant was then brought into contact with different cell types, and the viability even of delicate cells such as human liver cells (HepG2) and human dopaminergic neurons (LUHMES) has proven to be extraordinarily high. We could show further that the cells take up the fullerenol surfactant, and as a consequence, they are protected much better against oxidative stress.

Lade...
Vorschaubild
Veröffentlichung

Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes

2022-10, Wijaya, Lukas S., Rau, Carina, Braun, Theresa S., Marangoz, Serif, Spegg, Vincent, Vlasveld, Matthijs, Beltman, Joost B., van de Water, Bob, Leist, Marcel, Schildknecht, Stefan

Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to counteract negative influences. The present work hence pursued the question how intracellular glutathione can be elevated transiently to render cells more resistant toward harmful conditions. The antibiotic nitrofurantoin (NFT) was identified to stimulate de novo synthesis of glutathione in the human hepatoma cell line, HepG2, and in primary human hepatocytes. In intact cells, activation of NFT yielded a radical anion, which subsequently initiated nuclear-factor-erythroid 2-related-factor-2 (Nrf2)-dependent induction of glutamate cysteine ligase (GCL). Application of siRNA-based intervention approaches confirmed the involvement of the Nrf2-GCL axis in the observed elevation of intracellular glutathione levels. Quantitative activation of Nrf2 by NFT, and the subsequent rise in glutathione, were similar as observed with the potent experimental Nrf2 activator diethyl maleate. The elevation of glutathione levels, observed even 48 h after withdrawal of NFT, rendered cells resistant to different stressors such as the mitochondrial inhibitor rotenone, the redox cycler paraquat, the proteasome inhibitors MG-132 or bortezomib, or high concentrations of NFT. Repurpose of the antibiotic NFT as activator of Nrf2 could thus be a promising strategy for a transient and targeted activation of the endogenous antioxidant machinery. Graphical abstract.

Lade...
Vorschaubild
Veröffentlichung

Integration of temporal single cell cellular stress response activity with logic-ODE modeling reveals activation of ATF4-CHOP axis as a critical predictor of drug-induced liver injury

2021-05-04, Wijaya, Lukas Surya, Trairatphisan, Panuwat, Gabor, Attila, Niemeijer, Marije, Keet, Jason, Alcalà Morera, Ariadna, Snijders, Kirsten E., Schildknecht, Stefan, Leist, Marcel, van de Water, Bob

Drug-induced liver injury (DILI) is the most prevalent adversity encountered in drug development and clinical settings leading to urgent needs to understand the underlying mechanisms. In this study, we have systematically investigated the dynamics of the activation of cellular stress response pathways and cell death outcomes upon exposure of a panel of liver toxicants using live cell imaging of fluorescent reporter cell lines. We established a comprehensive temporal dynamic response profile of a large set of BAC-GFP HepG2 cell lines representing the following components of stress signaling: i) unfolded protein response (UPR) [ATF4, XBP1, BIP and CHOP]; ii) oxidative stress [NRF2, SRXN1, HMOX1]; iii) DNA damage [P53, P21, BTG2, MDM2]; and iv) NF-κB pathway [A20, ICAM1]. We quantified the single cell GFP expression as a surrogate for endogenous protein expression using live cell imaging over > 60 h upon exposure to 14 DILI compounds at multiple concentrations. Using logic-based ordinary differential equation (Logic-ODE), we modelled the dynamic profiles of the different stress responses and extracted specific descriptors potentially predicting the progressive outcomes. We identified the activation of ATF4-CHOP axis of the UPR as the key pathway showing the highest correlation with cell death upon DILI compound perturbation. Knocking down main components of the UPR provided partial protection from compound-induced cytotoxicity, indicating a complex interplay among UPR components as well as other stress pathways. Our results suggest that a systematic analysis of the temporal dynamics of ATF4-CHOP axis activation can support the identification of DILI risk for new candidate drugs.

Vorschaubild nicht verfügbar
Veröffentlichung

Upregulation of glutathione in hepatocytes by the antibiotic Nitrofurantoin

2019, Schildknecht, Stefan, Wijaja, L., Hengstler, Jan G., Kamp, Hennicke, Sperber, Saskia, van de Water, Bob, Leist, Marcel

Lade...
Vorschaubild
Veröffentlichung

Profiling of Human Neural Crest Chemoattractant Activity as a Replacement of Fetal Bovine Serum for In Vitro Chemotaxis Assays

2021-09-18, Dolde, Xenia, Karreman, Christiaan, Wiechers, Marianne F., Schildknecht, Stefan, Leist, Marcel

Fetal bovine serum (FBS) is the only known stimulus for the migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis as-says to be incorporated in a test battery for reproductive and developmental toxicity. We con-firmed here in an optimized transwell assay that FBS triggers directed migration along a con-centration gradient. The responsible factor was found to be a protein in the 30-100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chem-otactic for NCCs in animal models (e.g., VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined, whether human cells would produce any fac-tor able to trigger NCC migration in a broad screening approach. We found that HepG2 hepa-toma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as a direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease sensitivity suggested also a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.

Lade...
Vorschaubild
Veröffentlichung

Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants

2020-09, Gutbier, Simon, Kyriakou, Sotiris, Schildknecht, Stefan, Ückert, Anna-Katharina, Brüll, Markus, Lewis, Frank, Dickens, David, Pearson, Liam, Elson, Joanna L., Leist, Marcel

While the etiology of non-familial Parkinson’s disease (PD) remains unclear, there is evidence that increased levels of tissue iron may be a contributing factor. Moreover, exposure to some environmental toxicants is considered an additional risk factor. Therefore, brain-targeted iron chelators are of interest as antidotes for poisoning with dopaminergic toxicants, and as potential treatment of PD. We, therefore, designed a series of small molecules with high affinity for ferric iron and containing structural elements to allow their transport to the brain via the neutral amino acid transporter, LAT1 (SLC7A5). Five candidate molecules were synthesized and initially characterized for protection from ferroptosis in human neurons. The promising hydroxypyridinone SK4 was characterized further. Selective iron chelation within the physiological range of pH values and uptake by LAT1 were confirmed. Concentrations of 10–20 µM blocked neurite loss and cell demise triggered by the parkinsonian neurotoxicants, methyl-phenyl-pyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in human dopaminergic neuronal cultures (LUHMES cells). Rescue was also observed when chelators were given after the toxicant. SK4 derivatives that either lacked LAT1 affinity or had reduced iron chelation potency showed altered activity in our assay panel, as expected. Thus, an iron chelator was developed that revealed neuroprotective properties, as assessed in several models. The data strongly support the role of iron in dopaminergic neurotoxicity and suggests further exploration of the proposed design strategy for improving brain iron chelation.

Lade...
Vorschaubild
Veröffentlichung

Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress

2018-12, Gutbier, Simon, Spreng, Anna-Sophie, Delp, Johannes, Schildknecht, Stefan, Karreman, Christiaan, Suciu, Ilinca, Brunner, Thomas, Gröttrup, Marcus, Leist, Marcel

The development of drugs directly interfering with neurodegeneration has proven to be astonishingly difficult. Alternative therapeutic approaches could result from a better understanding of the supportive function of glial cells for stressed neurons. Therefore, here, we investigated the mechanisms involved in the endogenous neuro-defensive activity of astrocytes. A well-established model of postmitotic human dopaminergic neurons (LUHMES cells) was used in the absence ('LUHMES' mono-culture) or presence ('co-culture') of astrocytes. Inhibition of the LUHMES proteasome led to proteotoxic (protein aggregates; ATF-4 induction) and oxidative (GSH-depletion; NRF-2 induction) stress, followed by neuronal apoptosis. The presence of astrocytes attenuated the neuronal stress response, and drastically reduced neurodegeneration. A similar difference between LUHMES mono- and co-cultures was observed, when proteotoxic and oxidative stress was triggered indirectly by inhibitors of mitochondrial function (rotenone, MPP+). Human and murine astrocytes continuously released glutathione (GSH) into the medium, and transfer of glia-conditioned medium was sufficient to rescue LUHMES, unless it was depleted for GSH. Also, direct addition of GSH to LUHMES rescued the neurons from inhibition of the proteasome. Both astrocytes and GSH blunted the neuronal ATF-4 response and similarly upregulated NRF-1/NFE2L1, a transcription factor counter-regulating neuronal proteotoxic stress. Astrocyte co-culture also helped to recover the neurons' ability to degrade aggregated poly-ubiquitinated proteins. Overexpression of NRF-1 attenuated the toxicity of proteasome inhibition, while knockdown increased toxicity. Thus, astrocytic thiol supply increased neuronal resilience to various proteotoxic stressors by simultaneously attenuating cell death-related stress responses, and enhancing the recovery from proteotoxic stress through upregulation of NRF-1.