Schildknecht, Stefan

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Schildknecht
Vorname
Stefan
Name
Weiterer Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 44
Lade...
Vorschaubild
Veröffentlichung

Novel Proline Transporter Inhibitor (LQFM215) Presents Antipsychotic Effect in Ketamine Model of Schizophrenia

2024, Carvalho, Gustavo Almeida, Chiareli, Raphaela Almeida, Pedrazzi, João Francisco Cordeiro, Silva-Amaral, Danyelle, da Rocha, André Luís Batista, Oliveira-Lima, Onésia Cristina, Lião, Luciano Morais, Schildknecht, Stefan, Leist, Marcel, Pinto, Mauro Cunha Xavier

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as l-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.

Lade...
Vorschaubild
Veröffentlichung

Profiling of Human Neural Crest Chemoattractant Activity as a Replacement of Fetal Bovine Serum for In Vitro Chemotaxis Assays

2021-09-18, Dolde, Xenia, Karreman, Christiaan, Wiechers, Marianne F., Schildknecht, Stefan, Leist, Marcel

Fetal bovine serum (FBS) is the only known stimulus for the migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis as-says to be incorporated in a test battery for reproductive and developmental toxicity. We con-firmed here in an optimized transwell assay that FBS triggers directed migration along a con-centration gradient. The responsible factor was found to be a protein in the 30-100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chem-otactic for NCCs in animal models (e.g., VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined, whether human cells would produce any fac-tor able to trigger NCC migration in a broad screening approach. We found that HepG2 hepa-toma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as a direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease sensitivity suggested also a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.

Lade...
Vorschaubild
Veröffentlichung

Eine Strategie zur Ligandenselektion identifiziert chemische Sonden für die Markierung von SARS‐CoV‐2‐Proteasen

2021-03-15, Penalver, Lilian, Schmid, Philipp, Szamosvari, David, Schildknecht, Stefan, Globisch, Christoph, Sawade, Kevin, Peter, Christine, Böttcher, Thomas

Aktivitätsbasierte Sonden sind wertvolle Werkzeuge in der chemischen Biologie. Nach wie vor ist es jedoch eine Herausforderung, molekulare Sonden zu entwickeln, die spezifisch an das aktive Zentrum eines bestimmten Enzyms binden. Wir stellen hier eine Strategie zur Ligandenselektion vor, die es ermöglicht, rasch elektrophile Sonden auf ausgewählte Enzyme zuzuschneiden, und zeigen in einer Machbarkeitsstudie ihre Anwendung für die beiden Cysteinproteasen von SARS‐CoV‐2. Die resultierenden Sonden markieren spezifisch die aktiven Zentren von 3CLpro und PLpro mit hinreichender Selektivität sowohl in einem lebenden Zellmodell als auch vor dem Hintergrund eines nativen menschlichen Proteoms. Durch die Nutzung der Sonden als Werkzeuge für das kompetitive Screening einer Bibliothek von Naturstoffen wurden Salvianolsäurederivate als vielversprechende 3CLpro‐Inhibitoren identifiziert. Unsere Strategie zur Ligandenselektion wird für die schnelle Entwicklung von maßgeschneiderten Sonden von großem Nutzen sein und die Entdeckung von Inhibitoren für eine Vielzahl von Zielproteinen ermöglichen, die auch über Coronavirus‐Proteasen hinausgehen.

Lade...
Vorschaubild
Veröffentlichung

Reductive modification of genetically encoded 3-nitrotyrosine sites in alpha synuclein expressed in E.coli

2019-06, Gerding, Hanne R., Karreman, Christiaan, Daiber, Andreas, Delp, Johannes, Hammler, Daniel, Mex, Martin, Schildknecht, Stefan, Leist, Marcel

Tyrosine nitration is a post-translational protein modification relevant to various pathophysiological processes. Chemical nitration procedures have been used to generate and study nitrated proteins, but these methods regularly lead to modifications at other amino acid residues. A novel strategy employs a genetic code modification that allows incorporation of 3-nitrotyrosine (3-NT) during ribosomal protein synthesis to generate a recombinant protein with defined 3-NT-sites, in the absence of other post-translational modifications. This approach was applied to study the generation and stability of the 3-NT moiety in recombinant proteins produced in E.coli. Nitrated alpha-synuclein (ASYN) was selected as exemplary protein, relevant in Parkinson's disease (PD). A procedure was established to obtain pure tyrosine-modified ASYN in mg amounts. However, a rapid (t1/2 = 0.4 h) reduction of 3-NT to 3-aminotyrosine (3-AT) was observed. When screening for potential mechanisms, we found that 3-NT can be reduced enzymatically to 3-AT, whilst biologically relevant low molecular weight reductants, such as NADPH or GSH, did not affect 3-NT. A genetic screen for E.coli proteins, involved in the observed 3-NT reduction, revealed the contribution of several, possibly redundant pathways. Green fluorescent protein was studied as an alternative model protein. These data confirm 3-NT reduction as a broadly-relevant pathway in E.coli. In conclusion, incorporation of 3-NT as a genetically-encoded non-natural amino acid allows for generation of recombinant proteins with specific nitration sites. The potential reduction of the 3-NT moiety by E.coli, however, requires attention to the design of the purification strategy for obtaining pure nitrated protein.

Lade...
Vorschaubild
Veröffentlichung

Recovery of reduced thiol groups by superoxide-mediated denitrosation of nitrosothiols

2022-10, Schildknecht, Stefan, von Kriegsheim, Alex, Vujacic-Mirski, Ksenija, Di Lisa, Fabio, Ullrich, Volker, Daiber, Andreas

Lade...
Vorschaubild
Veröffentlichung

Synuclein Family Members Prevent Membrane Damage by Counteracting α-Synuclein Aggregation

2021-08, Scheibe, Christian, Karreman, Christiaan, Schildknecht, Stefan, Leist, Marcel, Hauser, Karin

The 140 amino acid protein α-synuclein (αS) is an intrinsically disordered protein (IDP) with various roles and locations in healthy neurons that plays a key role in Parkinson’s disease (PD). Contact with biomembranes can lead to α-helical conformations, but can also act as s seeding event for aggregation and a predominant β-sheet conformation. In PD patients, αS is found to aggregate in various fibrillary structures, and the shift in aggregation and localization is associated with disease progression. Besides full-length αS, several related polypeptides are present in neurons. The role of many αS-related proteins in the aggregation of αS itself is not fully understood Two of these potential aggregation modifiers are the αS splicing variant αS Δexon3 (Δ3) and the paralog β-synuclein (βS). Here, polarized ATR-FTIR spectroscopy was used to study the membrane interaction of these proteins individually and in various combinations. The method allowed a continuous monitoring of both the lipid structure of biomimetic membranes and the aggregation state of αS and related proteins. The use of polarized light also revealed the orientation of secondary structure elements. While αS led to a destruction of the lipid membrane upon membrane-catalyzed aggregation, βS and Δ3 aggregated significantly less, and they did not harm the membrane. Moreover, the latter proteins reduced the membrane damage triggered by αS. There were no major differences in the membrane interaction for the different synuclein variants. In combination, these observations suggest that the formation of particular protein aggregates is the major driving force for αS-driven membrane damage. The misbalance of αS, βS, and Δ3 might therefore play a crucial role in neurodegenerative disease.

Lade...
Vorschaubild
Veröffentlichung

A ligand selection strategy identifies chemical probes targeting the proteases of SARS‐CoV‐2

2021-03-15, Penalver, Lilian, Schmid, Philipp, Szamosvari, David, Schildknecht, Stefan, Globisch, Christoph, Sawade, Kevin, Peter, Christine, Böttcher, Thomas

Activity‐based probes are valuable tools for chemical biology. However, finding probes that specifically target the active site of an enzyme remains a challenging task. Here we present a ligand selection strategy that allows to rapidly tailor electrophilic probes to a target of choice and showcase its application for the two cysteine proteases of SARS‐CoV‐2 as proof of concept. The resulting probes were specific for the active site labelling of 3CL pro and PL pro with sufficient selectivity in a live cell model as well as in the background of a native human proteome. Exploiting the probes as tools for competitive profiling of a natural product library identified salvianolic acid derivatives as promising 3CL pro inhibitors. We anticipate that our ligand selection strategy will be useful to rapidly develop customized probes and discover inhibitors for a wide range of target proteins also beyond corona virus proteases.

Lade...
Vorschaubild
Veröffentlichung

Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes

2022-10, Wijaya, Lukas S., Rau, Carina, Braun, Theresa S., Marangoz, Serif, Spegg, Vincent, Vlasveld, Matthijs, Beltman, Joost B., van de Water, Bob, Leist, Marcel, Schildknecht, Stefan

Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to counteract negative influences. The present work hence pursued the question how intracellular glutathione can be elevated transiently to render cells more resistant toward harmful conditions. The antibiotic nitrofurantoin (NFT) was identified to stimulate de novo synthesis of glutathione in the human hepatoma cell line, HepG2, and in primary human hepatocytes. In intact cells, activation of NFT yielded a radical anion, which subsequently initiated nuclear-factor-erythroid 2-related-factor-2 (Nrf2)-dependent induction of glutamate cysteine ligase (GCL). Application of siRNA-based intervention approaches confirmed the involvement of the Nrf2-GCL axis in the observed elevation of intracellular glutathione levels. Quantitative activation of Nrf2 by NFT, and the subsequent rise in glutathione, were similar as observed with the potent experimental Nrf2 activator diethyl maleate. The elevation of glutathione levels, observed even 48 h after withdrawal of NFT, rendered cells resistant to different stressors such as the mitochondrial inhibitor rotenone, the redox cycler paraquat, the proteasome inhibitors MG-132 or bortezomib, or high concentrations of NFT. Repurpose of the antibiotic NFT as activator of Nrf2 could thus be a promising strategy for a transient and targeted activation of the endogenous antioxidant machinery. Graphical abstract.

Lade...
Vorschaubild
Veröffentlichung

Integration of temporal single cell cellular stress response activity with logic-ODE modeling reveals activation of ATF4-CHOP axis as a critical predictor of drug-induced liver injury

2021-05-04, Wijaya, Lukas Surya, Trairatphisan, Panuwat, Gabor, Attila, Niemeijer, Marije, Keet, Jason, Alcalà Morera, Ariadna, Snijders, Kirsten E., Schildknecht, Stefan, Leist, Marcel, van de Water, Bob

Drug-induced liver injury (DILI) is the most prevalent adversity encountered in drug development and clinical settings leading to urgent needs to understand the underlying mechanisms. In this study, we have systematically investigated the dynamics of the activation of cellular stress response pathways and cell death outcomes upon exposure of a panel of liver toxicants using live cell imaging of fluorescent reporter cell lines. We established a comprehensive temporal dynamic response profile of a large set of BAC-GFP HepG2 cell lines representing the following components of stress signaling: i) unfolded protein response (UPR) [ATF4, XBP1, BIP and CHOP]; ii) oxidative stress [NRF2, SRXN1, HMOX1]; iii) DNA damage [P53, P21, BTG2, MDM2]; and iv) NF-κB pathway [A20, ICAM1]. We quantified the single cell GFP expression as a surrogate for endogenous protein expression using live cell imaging over > 60 h upon exposure to 14 DILI compounds at multiple concentrations. Using logic-based ordinary differential equation (Logic-ODE), we modelled the dynamic profiles of the different stress responses and extracted specific descriptors potentially predicting the progressive outcomes. We identified the activation of ATF4-CHOP axis of the UPR as the key pathway showing the highest correlation with cell death upon DILI compound perturbation. Knocking down main components of the UPR provided partial protection from compound-induced cytotoxicity, indicating a complex interplay among UPR components as well as other stress pathways. Our results suggest that a systematic analysis of the temporal dynamics of ATF4-CHOP axis activation can support the identification of DILI risk for new candidate drugs.

Lade...
Vorschaubild
Veröffentlichung

Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants

2020-09, Gutbier, Simon, Kyriakou, Sotiris, Schildknecht, Stefan, Ückert, Anna-Katharina, Brüll, Markus, Lewis, Frank, Dickens, David, Pearson, Liam, Elson, Joanna L., Leist, Marcel

While the etiology of non-familial Parkinson’s disease (PD) remains unclear, there is evidence that increased levels of tissue iron may be a contributing factor. Moreover, exposure to some environmental toxicants is considered an additional risk factor. Therefore, brain-targeted iron chelators are of interest as antidotes for poisoning with dopaminergic toxicants, and as potential treatment of PD. We, therefore, designed a series of small molecules with high affinity for ferric iron and containing structural elements to allow their transport to the brain via the neutral amino acid transporter, LAT1 (SLC7A5). Five candidate molecules were synthesized and initially characterized for protection from ferroptosis in human neurons. The promising hydroxypyridinone SK4 was characterized further. Selective iron chelation within the physiological range of pH values and uptake by LAT1 were confirmed. Concentrations of 10–20 µM blocked neurite loss and cell demise triggered by the parkinsonian neurotoxicants, methyl-phenyl-pyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in human dopaminergic neuronal cultures (LUHMES cells). Rescue was also observed when chelators were given after the toxicant. SK4 derivatives that either lacked LAT1 affinity or had reduced iron chelation potency showed altered activity in our assay panel, as expected. Thus, an iron chelator was developed that revealed neuroprotective properties, as assessed in several models. The data strongly support the role of iron in dopaminergic neurotoxicity and suggests further exploration of the proposed design strategy for improving brain iron chelation.