Mendgen, Kurt

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Mendgen
Vorname
Kurt
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 159
Lade...
Vorschaubild
Veröffentlichung

Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35

2022-02-11, Tian, Yehan, Fu, Xuesong, Zhang, Gongchen, Zhang, Rui, Kang, Zhensheng, Gao, Kexiang, Mendgen, Kurt

Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.

Vorschaubild nicht verfügbar
Veröffentlichung

The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families

2014, Link, Tobias, Lang, Patrick, Scheffler, Brian E., Duke, Mary V., Graham, Michelle A., Cooper, Bret, Tucker, Mark L., van de Mortel, Martijn, Voegele, Ralf T., Mendgen, Kurt, Baum, Thomas J., Whitham, Steven A.

Haustoria of biotrophic rust fungi are responsible for the uptake of nutrients from their hosts and for the production of secreted proteins, known as effectors, which modulate the host immune system. The identification of the transcriptome of haustoria and an understanding of the functions of expressed genes therefore hold essential keys for the elucidation of fungus–plant interactions and the development of novel fungal control strategies. Here, we purified haustoria from infected leaves and used 454 sequencing to examine the haustorial transcriptomes of Phakopsora pachyrhizi and Uromyces appendiculatus, the causal agents of soybean rust and common bean rust, respectively. These pathogens cause extensive yield losses in their respective legume crop hosts. A series of analyses were used to annotate expressed sequences, including transposable elements and viruses, to predict secreted proteins from the assembled sequences and to identify families of candidate effectors. This work provides a foundation for the comparative analysis of haustorial gene expression with further insights into physiology and effector evolution.

Lade...
Vorschaubild
Veröffentlichung

Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea

2011, Mosbach, Andreas, Leroch, Michaela, Mendgen, Kurt, Hahn, Matthias

Background: Hydrophobins are small, cysteine rich, surface active proteins secreted by filamentous fungi, forming hydrophobic layers on the walls of aerial mycelia and spores. Hydrophobin mutants in a variety of fungi have been described to show ‘easily wettable’ phenotypes, indicating that hydrophobins play a general role in conferring surface hydrophobicity to aerial hyphae and spores.

Results: In the genome of the grey mould fungus Botrytis cinerea, genes encoding three hydrophobins and six hydrophobin-like proteins were identified. Expression analyses revealed low or no expression of these genes in conidia, while some of them showed increased or specific expression in other stages, such as sclerotia or fruiting
bodies. Bhp1 belongs to the class I hydrophobins, whereas Bhp2 and Bhp3 are members of hydrophobin class II. Single, double and triple hydrophobin knock-out mutants were constructed by consecutively deleting bhp1, bhp2 and bhp3. In addition, a mutant in the hydrophobin-like gene bhl1 was generated. The mutants were tested for
germination and growth under different conditions, formation of sclerotia, ability to penetrate and infect host tissue, and for spore and mycelium surface properties. Surprisingly, none of the B. cinerea hydrophobin mutants showed obvious phenotypic defects in any of these characters. Scanning electron microscopy of the hydrophobic
conidial surfaces did not reveal evidence for the presence of typical hydrophobin ‘rodlet’ layers.

Conclusions: These data provide evidence that in B. cinerea, hydrophobins are not involved in conferring surface hydrophobicity to conidia and aerial hyphae, and challenge their universal role in filamentous fungi. The function of some of these proteins in sclerotia and fruiting bodies remains to be investigated.

Vorschaubild nicht verfügbar
Veröffentlichung

Immunolocalization of pathogen effectors

2011, Kemen, Eric, Mendgen, Kurt, Voegele, Ralf T.

The use of polyclonal antibodies enables the detection of proteins on a cellular and even subcellular level. Immunolocalization can be used on all pathosystems even if one or both partners of the interaction are unamenable to molecular tools like transformation. This chapter provides detailed information about how to obtain high quality antibodies, how to prepare samples, and finally how to detect the proteins. Methods for light and electron microscopy are presented.

Lade...
Vorschaubild
Veröffentlichung

Small One-Helix Proteins Are Essential for Photosynthesis in Arabidopsis

2017-01-23, Beck, Jochen, Lohscheider, Jens, Albert, Susanne, Andersson, Ulrica, Mendgen, Kurt, Rojas-Stütz, Marc C., Adamska, Iwona, Funck, Dietmar

The extended superfamily of chlorophyll a/b binding proteins comprises the Light-Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to function in photoprotection or assembly of thylakoid pigment-protein complexes and are further divided into subgroups with one to three transmembrane helices. Two small One-Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels increase in response to light stress. In this study, we show that OHP1 and OHP2 are highly conserved in photosynthetic eukaryotes, but have probably evolved independently and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly, the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice versa. In both ohp1 and ohp2 mutants, the levels of numerous photosystem components were strongly reduced and photosynthetic electron transport was almost undetectable. Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon sources for growth and did not produce seeds. Interestingly, the induction of ELIP1 expression and Cu/Zn superoxide dismutase activity in low light conditions indicated that ohp1 mutants constantly suffer from photo-oxidative stress. Based on these data, we propose that OHP1 and OHP2 play an essential role in the assembly or stabilization of photosynthetic pigment-protein complexes, especially photosystem reaction centers, in the thylakoid membrane.

Vorschaubild nicht verfügbar
Veröffentlichung

A novel structural effector from rust fungi is capable of fibril formation

2013-09, Kemen, Eric, Kemen, Ariane, Ehlers, Andreas, Voegele, Ralf T., Mendgen, Kurt

It has been reported that filament‐forming surface proteins such as hydrophobins are important virulence determinants in fungi and are secreted during pathogenesis. Such proteins have not yet been identified in obligate biotrophic pathogens such as rust fungi. Rust transferred protein 1 (RTP1p), a rust protein that is transferred into the host cytoplasm, accumulates around the haustorial complex. To investigate RTP1p structure and function, we used immunocytological, biochemical and computational approaches. We found that RTP1p accumulates in protuberances of the extra‐haustorial matrix, a compartment that surrounds the haustorium and is separated from the plant cytoplasm by a modified host plasma membrane. Our analyses show that RTP1p is capable of forming filamentous structures in vitro and in vivo. We present evidence that filament formation is due to β–aggregation similar to what has been observed for amyloid‐like proteins. Our findings reveal that RTP1p is a member of a new class of structural effectors. We hypothesize that RTP1p is transferred into the host to stabilize the host cell and protect the haustorium from degradation in later stages of the interaction. Thus, we provide evidence for transfer of an amyloid‐like protein into the host cell, which has potential for the development of new resistance mechanisms against rust fungi.

Vorschaubild nicht verfügbar
Veröffentlichung

Nutrient uptake in rust fungi : how sweet is parasitic life?

2011, Voegele, Ralf T., Mendgen, Kurt

A better understanding of the fundamental principles of host-pathogen interactions should enable us to develop new strategies to control disease and to eliminate or at least manage their causative agents. This is especially true for obligate biotrophic parasites like the rust fungi. One vital aspect in the field of obligate biotrophic host-pathogen interactions is the mobilization, acquisition and metabolism of nutrients by the pathogen. This includes transporters necessary for the uptake of nutrients as well as enzymes necessary for their mobilization and metabolism. In a broader sense effector molecules reprogramming the host or triggering the infected cell into metabolic shifts favorable for the pathogen also play an important role in pathogen alimentation.

Vorschaubild nicht verfügbar
Veröffentlichung

Altered levels of LIL3 isoforms in Arabidopsis lead to disturbed pigment-protein assembly and chlorophyll synthesis, chlorotic phenotype and impaired photosynthetic performance

2015, Lohscheider, Jens, Rojas-Stütz, Marc C., Rothbart, Maxi, Andersson, Ulrica, Funck, Dietmar, Mendgen, Kurt, Grimm, Bernhard, Adamska, Iwona

Light-harvesting complex (LHC)-like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)-binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild-type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co-suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.

Vorschaubild nicht verfügbar
Veröffentlichung

The rust transferred proteins : a new family of effector proteins exhibiting protease inhibitor function

2013-01, Pretsch, Klara, Kemen, Ariane, Kemen, Eric, Geiger, Matthias, Mendgen, Kurt, Voegele, Ralf T.

Only few fungal effectors have been described to be delivered into the host cell during obligate biotrophic interactions. RTP1p, from the rust fungi Uromyces fabae and U. striatus, was the first fungal protein for which localization within the host cytoplasm could be demonstrated directly. We investigated the occurrence of RTP1 homologues in rust fungi and examined the structural and biochemical characteristics of the corresponding gene products. The analysis of 28 homologues showed that members of the RTP family are most likely to occur ubiquitously in rust fungi and to be specific to the order Pucciniales. Sequence analyses indicated that the structure of the RTPp effectors is bipartite, consisting of a variable N‐terminus and a conserved and structured C‐terminus. The characterization of Uf‐RTP1p mutants showed that four conserved cysteine residues sustain structural stability. Furthermore, the C‐terminal domain exhibits similarities to that of cysteine protease inhibitors, and it was shown that Uf‐RTP1p and Us‐RTP1p are able to inhibit proteolytic activity in Pichia pastoris culture supernatants. We conclude that the RTP1p homologues constitute a rust fungi‐specific family of modular effector proteins comprising an unstructured N‐terminal domain and a structured C‐terminal domain, which exhibit protease inhibitory activity possibly associated with effector function during biotrophic interactions.

Lade...
Vorschaubild
Veröffentlichung

Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed

2011, Ernst, Michael, Neubert, Karin, Mendgen, Kurt, Wirsel, Stefan G. R.

Background: Fungal endophyte communities are often comprised of many species colonizing the same host. However, little is known about the causes of this diversity. On the one hand, the apparent coexistence of closely related species may be explained by the traditional niche differentiation hypothesis, which suggests that abiotic and/or biotic factors mediate partitioning. For endophytes, such factors are difficult to identify, and are therefore in most cases unknown. On the other hand, there is the neutral hypothesis, which suggests that stochastic factors may explain high species diversity. There is a need to investigate to what extent each of these hypotheses may apply to endophytes.

Results: The niche partitioning of two closely related fungal endophytes, Microdochium bolleyi and M. phragmitis, colonizing Phragmites australis, was investigated. The occurrences of each species were assessed using specific nested-PCR assays for 251 field samples of common reed from Lake Constance, Germany. These analyses revealed niche preferences for both fungi.
From three niche factors assessed, i.e. host habitat, host organ and season, host habitat significantly differentiated the two species. M. bolleyi preferred dry habitats, whereas M. phragmitis prevailed in flooded habitats. In contrast, both species exhibited a significant preference for the same host organ, i.e. roots. Likewise the third factor, season, did not significantly distinguish the two species. Differences in carbon utilization and growth temperature could not conclusively explain the niches. The inclusion of three unrelated species of Ascomycota, which also colonize P. australis at the same locations, indicated
spatio-temporal niche partitioning between all fungi. None of the species exhibited the same preferences for all three factors, i.e. host habitat, host organ, and time of the season.

Conclusions:The fungal species colonizing common reed investigated in this study seem to exploit niche differences leading to a separation in space and time, which may allow for their coexistence on the same host. A purely neutral model is unlikely to explain the coexistence of closely related endophytes on common reed.