Oelke, Daniela
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Vorname
Name
Suchergebnisse Publikationen
Interactive Visualization for Fostering Trust in ML
2023, Chau, Polo, Endert, Alex, Keim, Daniel A., Oelke, Daniela
The use of artificial intelligence continues to impact a broad variety of domains, application areas, and people. However, interpretability, understandability, responsibility, accountability, and fairness of the algorithms' results - all crucial for increasing humans' trust into the systems - are still largely missing. The purpose of this seminar is to understand how these components factor into the holistic view of trust. Further, this seminar seeks to identify design guidelines and best practices for how to build interactive visualization systems to calibrate trust.
Towards visual debugging for multi-target time series classification
2020, Schlegel, Udo, Cakmak, Eren, Arnout, Hiba, El-Assady, Mennatallah, Oelke, Daniela, Keim, Daniel A.
Multi-target classification of multivariate time series data poses a challenge in many real-world applications (e.g., predictive maintenance). Machine learning methods, such as random forests and neural networks, support training these classifiers. However, the debugging and analysis of possible misclassifications remain challenging due to the often complex relations between targets, classes, and the multivariate time series data. We propose a model-agnostic visual debugging workflow for multi-target time series classification that enables the examination of relations between targets, partially correct predictions, potential confusions, and the classified time series data. The workflow, as well as the prototype, aims to foster an in-depth analysis of multi-target classification results to identify potential causes of mispredictions visually. We demonstrate the usefulness of the workflow in the field of predictive maintenance in a usage scenario to show how users can iteratively explore and identify critical classes, as well as, relationships between targets.
The Role of Interactive Visualization in Fostering Trust in AI
2021, Beauxis-Aussalet, Emma, Behrisch, Michael, Borgo, Rita, Chau, Duen Horng, Collins, Christopher, El-Assady, Mennatallah, Keim, Daniel A., Oelke, Daniela, Schreck, Tobias, Strobelt, Hendrik
The increasing use of artificial intelligence (AI) technologies across application domains has prompted our society to pay closer attention to AI's trustworthiness, fairness, interpretability, and accountability. In order to foster trust in AI, it is important to consider the potential of interactive visualization, and how such visualizations help build trust in AI systems. This manifesto discusses the relevance of interactive visualizations and makes the following four claims: i) trust is not a technical problem, ii) trust is dynamic, iii) visualization cannot address all aspects of trust, and iv) visualization is crucial for human agency in AI.
The Impact of Immersion on Cluster Identification Tasks
2020-01, Kraus, Matthias, Weiler, Niklas, Oelke, Daniela, Kehrer, Johannes, Keim, Daniel A., Fuchs, Johannes
Recent developments in technology encourage the use of head-mounted displays (HMDs) as a medium to explore visualizations in virtual realities (VRs). VR environments (VREs) enable new, more immersive visualization design spaces compared to traditional computer screens. Previous studies in different domains, such as medicine, psychology, and geology, report a positive effect of immersion, e.g., on learning performance or phobia treatment effectiveness. Our work presented in this paper assesses the applicability of those findings to a common task from the information visualization (InfoVis) domain. We conducted a quantitative user study to investigate the impact of immersion on cluster identification tasks in scatterplot visualizations. The main experiment was carried out with 18 participants in a within-subjects setting using four different visualizations, (1) a 2D scatterplot matrix on a screen, (2) a 3D scatterplot on a screen, (3) a 3D scatterplot miniature in a VRE and (4) a fully immersive 3D scatterplot in a VRE. The four visualization design spaces vary in their level of immersion, as shown in a supplementary study. The results of our main study indicate that task performance differs between the investigated visualization design spaces in terms of accuracy, efficiency, memorability, sense of orientation, and user preference. In particular, the 2D visualization on the screen performed worse compared to the 3D visualizations with regard to the measured variables. The study shows that an increased level of immersion can be a substantial benefit in the context of 3D data and cluster detection.