Schreck, Tobias

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Schreck
Vorname
Tobias
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 17
Lade...
Vorschaubild
Veröffentlichung

Investigating the Sketchplan : A Novel Way of Identifying Tactical Behavior in Massive Soccer Datasets

2023, Seebacher, Daniel, Polk, Tom, Janetzko, Halldor, Keim, Daniel A., Schreck, Tobias, Stein, Manuel

Coaches and analysts prepare for upcoming matches by identifying common patterns in the positioning and movement of the competing teams in specific situations. Existing approaches in this domain typically rely on manual video analysis and formation discussion using whiteboards; or expert systems that rely on state-of-the-art video and trajectory visualization techniques and advanced user interaction. We bridge the gap between these approaches by contributing a light-weight, simplified interaction and visualization system, which we conceptualized in an iterative design study with the coaching team of a European first league soccer team. Our approach is walk-up usable by all domain stakeholders, and at the same time, can leverage advanced data retrieval and analysis techniques: a virtual magnetic tactic-board. Users place and move digital magnets on a virtual tactic-board, and these interactions get translated to spatio-temporal queries, used to retrieve relevant situations from massive team movement data. Despite such seemingly imprecise query input, our approach is highly usable, supports quick user exploration, and retrieval of relevant results via query relaxation. Appropriate simplified result visualization supports in-depth analyses to explore team behavior, such as formation detection, movement analysis, and what-if analysis. We evaluated our approach with several experts from European first league soccer clubs. The results show that our approach makes the complex analytical processes needed for the identification of tactical behavior directly accessible to domain experts for the first time, demonstrating our support of coaches in preparation for future encounters.

Lade...
Vorschaubild
Veröffentlichung

Visual Analysis of Urban Traffic Data based on High-Resolution and High-Dimensional Environmental Sensor Data

2018, Häußler, Johannes, Stein, Manuel, Seebacher, Daniel, Janetzko, Halldor, Schreck, Tobias, Keim, Daniel A.

Urbanization is an increasing global trend resulting in a strong increase in public and individual transportation needs. Accordingly, a major challenge for traffic and urban planners is the design of sustainable mobility concepts to maintain and increase the long-term health of humans by reducing environmental pollution. Recent developments in sensor technology allow the precise tracking of vehicle sensor information, allowing a closer and more in-depth analysis of traffic data. We propose a visual analytics system for the exploration of environmental factors in these high-resolution and high-dimensional mobility sensor data. Additionally, we introduce an interactive visual logging approach to enable experts to cope with complex interactive analysis processes and the problem of the reproducibility of results. The usefulness of our approach is demonstrated via two expert studies with two domain experts from the field of environment-related projects and urban traffic planning.

Lade...
Vorschaubild
Veröffentlichung

Dynamic Visual Abstraction of Soccer Movement

2017-07-04, Sacha, Dominik, Al-Masoudi, Feeras, Stein, Manuel, Schreck, Tobias, Keim, Daniel A., Andrienko, Gennady, Janetzko, Halldor

Trajectory-based visualization of coordinated movement data within a bounded area, such as player and ball movement within a soccer pitch, can easily result in visual crossings, overplotting, and clutter. Trajectory abstraction can help to cope with these issues, but it is a challenging problem to select the right level of abstraction (LoA) for a given data set and analysis task. We present a novel dynamic approach that combines trajectory simplification and clustering techniques with the goal to support interpretation and understanding of movement patterns. Our technique provides smooth transitions between different abstraction types that can be computed dynamically and on-the-fly. This enables the analyst to effectively navigate and explore the space of possible abstractions in large trajectory data sets. Additionally, we provide a proof of concept for supporting the analyst in determining the LoA semi-automatically with a recommender system. Our approach is illustrated and evaluated by case studies, quantitative measures, and expert feedback. We further demonstrate that it allows analysts to solve a variety of analysis tasks in the domain of soccer.

Lade...
Vorschaubild
Veröffentlichung

Director's Cut : Analysis and Annotation of Soccer Matches

2016-09, Stein, Manuel, Janetzko, Halldor, Breitkreutz, Thorsten, Seebacher, Daniel, Schreck, Tobias, Grossniklaus, Michael, Couzin, Iain D., Keim, Daniel A.

For development and alignment of tactics and strategies, professional soccer analysts spend up to three working days manually analyzing and annotating professional soccer matches. In an effort to improve soccer player and match analysis, a visual-interactive and data-analysis support system focuses on key situations by using rule-based filtering and automatically annotating key types of soccer match elements. The authors evaluate the proposed approach by analyzing real-world soccer matches and several expert studies. Quantitative measures show the proposed methods can significantly outperform naive solutions.

Lade...
Vorschaubild
Veröffentlichung

Where to go : Computational and visual what-if analyses in soccer

2019-12-17, Stein, Manuel, Seebacher, Daniel, Marcelino, Rui, Schreck, Tobias, Grossniklaus, Michael, Keim, Daniel A., Janetzko, Halldor

To prepare their teams for upcoming matches, analysts in professional soccer watch and manually annotate up to three matches a day. When annotating matches, domain experts try to identify and improve suboptimal movements based on intuition and professional experience. The high amount of matches needing to be analysed manually result in a tedious and time-consuming process, and results may be subjective. We propose an automatic approach for the realisation of effective region-based what-if analyses in soccer. Our system covers the automatic detection of region-based faulty movement behaviour, as well as the automatic suggestion of possible improved alternative movements. As we show, our approach effectively supports analysts and coaches investigating matches by speeding up previously time-consuming work. We enable domain experts to include their domain knowledge in the analysis process by allowing to interactively adjust suggested improved movement, as well as its implications on region control. We demonstrate the usefulness of our proposed approach via an expert study with three invited domain experts, one being head coach from the first Austrian soccer league. As our results show that experts most often agree with the suggested player movement (83%), our proposed approach enhances the analytical capabilities in soccer and supports a more efficient analysis.

Lade...
Vorschaubild
Veröffentlichung

Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis

2018-01, Stein, Manuel, Janetzko, Halldor, Lamprecht, Andreas, Breitkreutz, Thorsten, Zimmermann, Philip, Goldlücke, Bastian, Schreck, Tobias, Andrienko, Gennady, Grossniklaus, Michael, Keim, Daniel A.

Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.

Lade...
Vorschaubild
Veröffentlichung

How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects

2017-03, Stein, Manuel, Janetzko, Halldor, Seebacher, Daniel, Jäger, Alexander, Nagel, Manuel, Hölsch, Jürgen, Kosub, Sven, Schreck, Tobias, Keim, Daniel A., Grossniklaus, Michael

Automatic and interactive data analysis is instrumental in making use of increasing amounts of complex data. Owing to novel sensor modalities, analysis of data generated in professional team sport leagues such as soccer, baseball, and basketball has recently become of concern, with potentially high commercial and research interest. The analysis of team ball games can serve many goals, e.g., in coaching to understand effects of strategies and tactics, or to derive insights improving performance. Also, it is often decisive to trainers and analysts to understand why a certain movement of a player or groups of players happened, and what the respective influencing factors are. We consider team sport as group movement including collaboration and competition of individuals following specific rule sets. Analyzing team sports is a challenging problem as it involves joint understanding of heterogeneous data perspectives, including high-dimensional, video, and movement data, as well as considering team behavior and rules (constraints) given in the particular team sport. We identify important components of team sport data, exemplified by the soccer case, and explain how to analyze team sport data in general. We identify challenges arising when facing these data sets and we propose a multi-facet view and analysis including pattern detection, context-aware analysis, and visual explanation. We also present applicable methods and technologies covering the heterogeneous aspects in team sport data.

Lade...
Vorschaubild
Veröffentlichung

Revealing the Invisible : Visual Analytics and Explanatory Storytelling for Advanced Team Sport Analysis

2018-10, Stein, Manuel, Breitkreutz, Thorsten, Häußler, Johannes, Seebacher, Daniel, Niederberger, Christoph, Schreck, Tobias, Grossniklaus, Michael, Keim, Daniel A., Janetzko, Halldor

The analysis of invasive team sports often concentrates on cooperative and competitive aspects of collective movement behavior. A main goal is the identification and explanation of strategies, and eventually the development of new strategies. In visual sports analytics, a range of different visual-interactive analysis techniques have been proposed, e.g., based on visualization using for example trajectories, graphs, heatmaps, and animations. Identifying suitable visualizations for a specific situation is key to a successful analysis. Existing systems enable the interactive selection of different visualization facets to support the analysis process. However, an interactive selection of appropriate visualizations is a difficult, complex, and time-consuming task. In this paper, we propose a four-step analytics conceptual workflow for an automatic selection of appropriate views for key situations in soccer games. Our concept covers classification, specification, explanation, and alteration of match situations, effectively enabling the analysts to focus on important game situations and the determination of alternative moves. Combining abstract visualizations with real world video recordings by Immersive Visual Analytics and descriptive storylines, we support domain experts in understanding key situations. We demonstrate the usefulness of our proposed conceptual workflow via two proofs of concept and evaluate our system by comparing our results to manual video annotations by domain experts. Initial expert feedback shows that our proposed concept improves the understanding of competitive sports and leads to a more efficient data analysis.

Lade...
Vorschaubild
Veröffentlichung

Tackling Similarity Search for Soccer Match Analysis : Multimodal Distance Measure and Interactive Query Definition

2018, Stein, Manuel, Janetzko, Halldor, Schreck, Tobias, Keim, Daniel A.

Analysts and coaches in soccer sports need to investigate large sets of past matches of opposing teams in short time to prepare their teams for upcoming matches. Thus, they need appropriate methods and systems supporting them in searching for soccer moves for comparison and explanation. For the search of similar soccer moves, established distance and similarity measures typically only take spatio-temporal features like shape and speed of movement into account. However, movement in invasive team sports such as soccer, includes much more than just a sequence of spatial locations. We survey the current state-of-the-art in trajectory distance measures and subsequently propose an enhanced similarity measure integrating spatial, player, event as well as high level context such as pressure into the process of similarity search. We present a visual search system supporting analysts in interactively identifying similar contextual enhanced soccer moves in a dataset containing more than 60 soccer matches. Our approach is evaluated by several expert studies. The results of the evaluation reveal the large potential of enhanced similarity measures in the future.

Vorschaubild nicht verfügbar
Veröffentlichung

Visual Analytics and Similarity Search : Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data

2017, Seebacher, Daniel, Häußler, Johannes, Stein, Manuel, Janetzko, Halldor, Schreck, Tobias

A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.