Kelly, Joseph B.

Joseph B.
Weiterer Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 3 von 3

Novel trends of genome evolution in highly complex tropical sponge microbiomes

2022-10-24, Kelly, Joseph B., Carlson, David E., Low, Jun Siong, Thacker, Robert W.

Tropical members of the sponge genus Ircinia possess highly complex microbiomes that perform a broad spectrum of chemical processes that influence host fitness. Despite the pervasive role of microbiomes in Ircinia biology, it is still unknown how they remain in stable association across tropical species. To address this question, we performed a comparative analysis of the microbiomes of 11 Ircinia species using whole-metagenomic shotgun sequencing data to investigate three aspects of bacterial symbiont genomes—the redundancy in metabolic pathways across taxa, the evolution of genes involved in pathogenesis, and the nature of selection acting on genes relevant to secondary metabolism.

A total of 424 new, high-quality bacterial metagenome-assembled genomes (MAGs) were produced for 10 Caribbean Ircinia species, which were evaluated alongside 113 publicly available MAGs sourced from the Pacific species Ircinia ramosa. Evidence of redundancy was discovered in that the core genes of several primary metabolic pathways could be found in the genomes of multiple bacterial taxa. Across hosts, the metagenomes were depleted in genes relevant to pathogenicity and enriched in eukaryotic-like proteins (ELPs) that likely mimic the hosts’ molecular patterning. Finally, clusters of steroid biosynthesis genes (CSGs), which appear to be under purifying selection and undergo horizontal gene transfer, were found to be a defining feature of Ircinia metagenomes.

These results illustrate patterns of genome evolution within highly complex microbiomes that illuminate how associations with hosts are maintained. The metabolic redundancy within the microbiomes could help buffer the hosts from changes in the ambient chemical and physical regimes and from fluctuations in the population sizes of the individual microbial strains that make up the microbiome. Additionally, the enrichment of ELPs and depletion of LPS and cellular motility genes provide a model for how alternative strategies to virulence can evolve in microbiomes undergoing mixed-mode transmission that do not ultimately result in higher levels of damage (i.e., pathogenicity) to the host. Our last set of results provides evidence that sterol biosynthesis in Ircinia-associated bacteria is widespread and that these molecules are important for the survival of bacteria in highly complex Ircinia microbiomes.


New shallow water species of Caribbean Ircinia Nardo, 1833 (Porifera: Irciniidae)

2021, Kelly, Joseph B., Thacker, Robert W.

Seven Ircinia morphospecies were collected from three sites in the Caribbean (Bocas del Toro, Panama; the Mesoamerican Barrier Reef, Belize; and the Florida Keys, United States of America). Previous research used an integrative taxonomic framework (genome-wide SNP sampling and microbiome profiling) to delimit species boundaries among these Ircinia. Here, we present morphological descriptions for these species, six of which are new to science (Ircinia lowi sp. nov., Ircinia bocatorensis sp. nov., Ircinia radix sp. nov., Ircinia laeviconulosa sp. nov., Ircinia vansoesti sp. nov., Ircinia ruetzleri sp. nov.) in addition to one species conferre (Ircinia cf. reteplana Topsent, 1923).


The Relationship Between Microbiomes and Selective Regimes in the Sponge Genus Ircinia

2021, Kelly, Joseph B., Carlson, David E., Low, Jun Siong, Rice, Tyler, Thacker, Robert W.

Sponges are often densely populated by microbes that benefit their hosts through nutrition and bioactive secondary metabolites; however, sponges must simultaneously contend with the toxicity of microbes and thwart microbial overgrowth. Despite these fundamental tenets of sponge biology, the patterns of selection in the host sponges' genomes that underlie tolerance and control of their microbiomes are still poorly understood. To elucidate these patterns of selection, we performed a population genetic analysis on multiple species of Ircinia from Belize, Florida, and Panama using an F ST -outlier approach on transcriptome-annotated RADseq loci. As part of the analysis, we delimited species boundaries among seven growth forms of Ircinia. Our analyses identified balancing selection in immunity genes that have implications for the hosts' tolerance of high densities of microbes. Additionally, our results support the hypothesis that each of the seven growth forms constitutes a distinct Ircinia species that is characterized by a unique microbiome. These results illuminate the evolutionary pathways that promote stable associations between host sponges and their microbiomes, and that potentially facilitate ecological divergence among Ircinia species.