Haffke, Dirk

Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name

Search Results

Now showing 1 - 4 of 4
Thumbnail Image

Two Types of Liquid Phase Separation Induced by Soft Centrifugation in Aqueous Ethyl Acetate Using Ethanol as Cosolvent

2023-01, Cölfen, Helmut, Rosenberg, Rose, Haffke, Dirk, Stemplinger, Simon, Zemb, Thomas, Horinek, Dominik

Water/ethyl acetate/ethanol is widely used as a “green” extractant system. We show that 2 different types of phase separation can be induced upon centrifugation in this ternary system using ethanol as a cosolvent of water and ethyl acetate: centrifuge-induced criticality and centrifuge-induced emulsification. The expected composition profiles of samples after centrifugation can be represented by bent lines in a ternary phase diagram when gravitational energy is added to the free energy of mixing. The experimental equilibrium composition profiles behave qualitatively as expected and can be predicted using a phenomenological theory of mixing. The concentration gradients are small except near the critical point, as expected for small molecules. Nevertheless, they are usable when accompanied by temperature cycles. These findings open new possibilities of centrifugal separation, even if control is delicate during temperature cycles. These schemes are accessible even at relatively low centrifugation speed for molecules that float and sediment with apparent molar masses several hundred times larger than the molecular mass.

No Thumbnail Available

Next-Generation AUC Adds a Spectral Dimension : Development of Multiwavelength Detectors for the Analytical Ultracentrifuge

2015, Pearson, Joseph, Krause, Frank, Haffke, Dirk, Demeler, Borries, Schilling, Kristian, Cölfen, Helmut

We describe important advances in analytical ultracentrifugation (AUC) hardware, which add new information to the hydrodynamic information observed in traditional AUC instruments. In contrast to the Beckman-Coulter XLA UV/visible detector, multiwavelength (MWL) detection is able to collect sedimentation data not just for one wavelength, but for a large wavelength range in a single experiment. The additional dimension increases the data density by orders of magnitude, significantly improving the statistics of the measurement and adding important information to the experiment since an additional dimension of spectral characterization is now available to complement the hydrodynamic information. The new detector avoids tedious repeats of experiments at different wavelengths and opens up new avenues for the solution-based investigation of complex mixtures. In this chapter, we describe the capabilities, characteristics, and applications of the new detector design with biopolymers as the focus of study. We show data from two different MWL detectors and discuss strengths and weaknesses of differences in the hardware and different data acquisition modes. Also, difficulties with fiber optic applications in the UV are discussed. Data quality is compared across platforms.

Thumbnail Image

Phase separation of binary mixtures induced by soft centrifugal fields

2021, Zemb, Thomas, Rosenberg, Rose, Marčelja, Stjepan, Haffke, Dirk, Dufrêche, Jean-François, Kunz, Werner, Horinek, Dominik, Cölfen, Helmut

We use the model system ethanol–dodecane to demonstrate that giant critical fluctuations induced by easily accessible weak centrifugal fields as low as 2000g can be observed above the miscibility gap of a binary liquid mixture. Moreover, several degrees above the phase transition, i.e. in the one-phase region, strong gradients of ethanol concentration occur upon centrifugation. In this case, the standard interpretation of sedimentation equilibrium in the analytical ultracentrifuge (AUC) yields an apparent molar mass of ethanol three orders of magnitude higher than the real value. Notably, these composition gradients have no influence on the distribution gradient of solutes such as dyes like Nile red. The thick opaque interphase formed upon centrifugation does not appear as the commonly observed sharp meniscus, but as a turbidity zone, similar to critical opalescence. This layer is a few millimeters thick and separates two fluids with low compositional gradients. All these effects can be qualitatively understood and explained using the Flory–Huggins solution model coupled to classical density functional theory (DFT). In this domain hetero-phase fluctuations can be triggered by gravity even far from the critical point. Taking into account Jean Perrin's approach to external fields in colloids, a self-consistent definition of the Flory effective volume and an explicit calculation of the total free energy per unit volume is possible.

No Thumbnail Available

Band Sedimentation Experiment in Analytical Ultracentrifugation Revisited

2018-09-04, Schneider, Cornelia M., Haffke, Dirk, Cölfen, Helmut

The band sedimentation experiment in analytical ultracentrifugation (AUC) allows for the performance of a chemical reaction inside the AUC and also offers separation of individual pure components in a sedimentation velocity experiment. Although this experiment offers exciting possibilities for application, it is barely used. This is related to the bad definition of the initial conditions. Both the duration and the time of the solution overlay during rotor acceleration are not known. In this study, we investigate these conditions under the variation of the overlay volume using recording of interference patterns in a continuous mode during the acceleration of the rotor. It was found that the overlay occurs at rotor speeds between 770 and 2000 rpm, which is very low compared to typical experimental rotor speeds from 3 000 to 60 000 rpm and therefore elucidates that the generated reaction products, respectively, overlaid species are subject to the centrifugal force almost from the beginning. Also, the duration of the overlay is less than 1.2 s, which is very fast compared to hours of centrifugation time for an experiment and we demonstrated that the overlay compartment is completely emptied during overlay allowing for the precise calculation of the meniscus using the known sample sector geometry. Our results show that the initial conditions of the experiment are defined and should make an adapted analysis possible if the interdiffusion of the two solvents is taken into account, which lead to a dynamic density gradient.