Stoll, Stefan

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Stoll
Vorname
Stefan
Name
Weiterer Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 10
Vorschaubild nicht verfügbar
Veröffentlichung

Cross-realm assessment of climate change impacts on species' abundance trends

2017, Bowler, Diana E, Hof, Christian, Haase, Peter, Kröncke, Ingrid, Schweiger, Oliver, Adrian, Rita, Baert, Léon, Eckmann, Reiner, Stoll, Stefan, Böhning-Gaese, Katrin

Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.

Lade...
Vorschaubild
Veröffentlichung

Larval fish in troubled waters - is the behavioural response of larval fish to hydrodynamic impacts active or passive?

2012, Stoll, Stefan, Beeck, Peter

In a mesocosm experiment, we tested whether larval fish show an active behavioural response to hydrodynamic impacts. Exposing 1- to 3-week-old allis shad (Alosa alosa) larvae to a pulsed wave regime, we found that already 1-weekold larvae immediately adapt their microhabitat use and activity patterns at the onset of the wave pulses. The fish larvae instantaneously increased their activity level and moved downwards, concentrating in the calmer lower third of the water column. Within 4 min after the end of the wave pulse, the fish returned to their former distribution. Two- and 3-week-old fish larvae foraged close to the bottom substratum during calm periods but avoided this zone during the wave pulses. Thus, larval fish show an active response to hydrodynamic impacts. With the ability to adjust microhabitat use and activity level, already fish larvae are able to trade costs and benefits associated with spatio-temporal hydrodynamic heterogeneity. In particular, fish larvae should be able to minimize some of the harmful effects of navigation-induced waves where calmer evasion habitats are available.

Lade...
Vorschaubild
Veröffentlichung

Post-release stranding rates of stocked allis shad (Alosa alosa) larvae exposed to surface wave action

2011, Stoll, Stefan, Beeck, Peter

The objectives of the present study were to test the effects of sudden wave action caused by ships on newly released larval shad thriving along shallow river beaches because heavy shipping traffic has developed in many shad river systems. Experiments were conducted in a wave tank simulating a crosssection of the river shore. Up to 17% of the one week old allis shad stranded within the first 7 h after their release, but with increasing age of the released larvae, stranding rates decreased. Stranding rates were always highest directly after the release of fish and decreased throughout the experimental period of 7 h. The stranding rates were further influenced by weather, with higher stranding rates when it was sunny and when water temperatures were low. These results can be used to improve release strategies and stocking procedures of shad larvae and may probably be applied to other larval fish species as well.

Lade...
Vorschaubild
Veröffentlichung

Effects of water depth and hydrodynamics on the growth and distribution of juvenile cyprinids in the littoral zone of a large pre-alpine lake

2008, Stoll, Stefan, Fischer, Philipp, Klahold, Petra, Scheifhacken, Nicole, Hofmann, Hilmar, Rothhaupt, Karl-Otto

In enclosure experiments in the littoral zone of Lake Constance, Germany, juvenile cyprinids showed significantly reduced somatic growth in the shallow eulittoral zone (0 to 5 m depth)compared to the sublittoral zone (1 to 6 m depth). Growth was especially reduced in larger and more deep-bodied fish groups, providing evidence that this is due to increased hydrodynamic stress, induced by ship and wind waves, in the shallow habitats compared to the deep habitat. Other factors such as water temperature and food availability seemed to be of minor importance for the observed growth differences. Gillnet catches at the experimental site and an adjacent site showed that most juvenile cyprinids, including the species from the enclosure study, bream Abramis brama and dace Leuciscus leuciscus, nonetheless prefer shallow habitats compared to deeper sublittoral habitats. Juvenile cyprinids in Lake Constance may prefer these shallow habitats as refuges against larger piscivorous predators, mainly perch Perca fluviatilis, despite the cost in terms of reduced somatic growth indicating that juvenile cyprinids first of all optimize survival rate instead of somatic growth rate.

Lade...
Vorschaubild
Veröffentlichung

Complex interactions between pre-spawning water level increase, trophic state and spawning stock biomass determine year-class strength in a shallow-water-spawning fish

2013, Stoll, Stefan

Pre spawning water level increase (PWLI) is a recently discovered parameter of water level dynamics affecting juvenile year class strength (YCS) in shallow water spawning fish. By analysing a time series of commercial common bream (Abramis brama) yields in Lake Constance from 1950 through 2007, this study showed that the differences in juvenile YCS are conserved until the adult life stage. Adult YCS was best explained by complex interactions of PWLI with both stock intrinsic and extrinsic environmental variables. The correlation between PWLI and YCS of adult bream became more pronounced as the trophic state of the lake increased. It is argued that this mediator effect of the trophic state results from increased growth of the algal biofilms during high trophic state periods. These biofilms are known to impair safe attachment of the eggs to the substratum and affect mortality rates of the eggs. Furthermore, reproductive stock size exhibited a positive effect on the resulting YCS. However, a marginally significant interaction between reproductive stock size and PWLI indicates that the two positive effects of PWLI and reproductive stock size on YCS were not fully additive, probably because the very large year classes resulting from the combined positive effects suffered from strong intra specific competition. This study demonstrates that anthropogenic water level regulation, e.g. for flood protection or for the generation of hydroelectric power, and climate change altering PWLI have the potential to affect YCS throughout the whole life cycle of bream, particularly in eutrophic water bodies. Similar effects of PWLI are anticipated in other shallow water spawning species.

Lade...
Vorschaubild
Veröffentlichung

Three different patterns of how low-intensity waves can affect the energy budget of littoral fish : a mesocosm study

2011-03, Stoll, Stefan, Fischer, Philipp

In a mesocosm study, somatic and otolith growth of six types of juvenile cyprinids differing in body size and body shape were studied in a low-intensity wave treatment and a no-wave control. Depending on fish type, somatic growth was either reduced by up to 60% or increased by up to 50% following exposure to the wave treatment. Somatic growth and otolith daily increment width (ODIW), the latter being used as a proxy for the fish energy turnover, were compared to reveal the effects of waves on the energy budget of the fish. Three different reaction types to waves, which correlated to the body morphology of the six fish groups, could be distinguished. Small and fusiform fish benefitted from low-intensity waves and showed higher somatic growth rates and greater ODIW in the wave treatment. In small, deep-bodied fish, growth and ODIW were reduced by waves. Finally, in larger fish with either a fusiform or deep-bodied shape, ODIW was decoupled from somatic growth, with larger ODIW in waves, but reduced somatic growth. These results show that low-intensity hydrodynamic stress is a much more important and complex habitat factor than previously assumed. It is concluded that hydrodynamic stress by waves should be accounted for in bioenergetic models and studies on habitat choice in littoral fish species.

Lade...
Vorschaubild
Veröffentlichung

Effect of wave exposure dynamics on gut content mass and growth of young-of-the-year fishes in the littoral zone of lakes

2010-05, Stoll, Stefan, Hofmann, Hilmar, Fischer, Philipp

Total length, body mass and gut content mass of young-of-the-year (YOY) perch Perca fluviatilis, dace Leuciscus leuciscus and bleak Alburnus alburnus were recorded over the summer of 2006 at three littoral sites at Upper Lake Constance. In P. fluviatilis and L. leuciscus, gut content mass correlated positively with wave-induced energy flux (EF) of the respective site and sampling day, while no correlation of gut content mass with EF was found in A. alburnus. It was assumed that benthivorous P. fluviatilis and L. leuciscus profited from suspended or uncovered benthic food items generated by wave action at sites and periods with high EF. Alburnus alburnus, in contrast, feeding mainly on zooplankton in upper parts of the water column, could not profit from increased EF. In P. fluviatilis, increased gut content mass during periods of high EF resulted in higher growth rates. For L. leuciscus, no real growth rates in local fish populations could be determined, as individuals were less sedentary, and when increased growth occurred at sites during the periods of high EF, migration of fish levelled out the resulting size differences within few days. The results of this study show that dynamic habitat variables affect site profitability in the littoral zone of lakes, especially in benthivorous fishes. Therefore, dynamic habitat variables should be considered in addition to fixed habitat properties in analyses of habitat choice of fishes in the littoral zone of lakes.

Lade...
Vorschaubild
Veröffentlichung

Auswirkungen auf limnische Lebensräume

2012, Haase, Peter, Hering, Daniel, Hoffmann, Andreas, Müller, Ruth, Nowak, Carsten, Pauls, Steffen, Stoll, Stefan, Straile, Dietmar

Die direkten Auswirkungen der in Folge des projizierten Klimawandels steigenden Lufttemperaturen und veränderten Niederschläge auf limnische
Systeme in Deutschland sind vielfältig: So wird die veränderte Niederschlagssituation (mehr Extremereignisse, weniger Sommerniederschlag, mehr Winterniederschlag; s. Kap 2) das Abflussverhalten von Fließgewässern sowie die Wasserstände von Standgewässern in Form einer erhöhten Amplitude deutlich beeinflussen. Tendenziell werden kleinere Gewässer häufiger von Austrocknung und größere von ausgeprägten Niedrigwasserphasen betroffen sein. Auf der anderen Seite führen extremere Starkregenereignisse sowie eine Zunahme der Niederschlagsmengen im Winterhalbjahr zu häufigeren und stärkeren
Hochwasserereignissen. Bezüglich der Temperatur ist die Einschätzung
des Ausmaßes der Veränderungen erschwert, da die prognostizierten Lufttemperaturerhöhungen nicht zwangsläufig direkt auf die Wassertemperatur übertragen werden können. Durch die gegenüber Luft deutlich höhere Wärmekapazität von Wasser reagieren größere Wasserkörper träger als kleinere. Zudem ist mit einer Erwärmung des Wassers auch eine Zunahme der Verdunstungsrate verbunden, was wiederum Verdunstungskälte erzeugt. Des Weiteren führen die verminderten Sommerniederschläge vermehrt zu Niedrigwassersituationen, was wiederum aufgrund des daraus resultierenden kleineren Wasserkörpers zu einer schnelleren Erwärmung des Gewässers führt. Insgesamt ist von einer Erhöhung der Wassertemperaturen auszugehen, wobei das genaue Ausmaß von Art und Größe des Gewässers abhängig und noch nicht hinreichend quantifiziert ist. Steigende Wassertemperaturen führen auch zu einer erhöhten Löslichkeit von Schad- und Nährstoffen sowie einem Absinken der Sauerstoffkonzentrationen. Die veränderten hydrologischen Bedingungen führen in Fließgewässern ihrerseits zu verstärktem Sedimenttransport sowie Erosionsereignissen. Hinzu kommen indirekte Effekte des Klimawandels wie beispielsweise eine veränderte Landnutzung im Einzugsgebiet mit entsprechenden Folgen für unsere Gewässer (veränderter Nährstoff - und Sedimenteintrag, Pestizidbelastung etc.). All diese Aspekte führen vermutlich zu tiefgreifenden Veränderungen der Gewässerbiozönosen. Die Quantifizierung dieser Veränderungen ist jedoch schwierig. Während großräumige klimabedingte Änderungen von Artarealen mittels „species distribution models“ (SDMs) zumindest in ihrer Tendenz mittlerweile recht gut projiziert werden können, sind kleinräumige Vorhersagen für Einzugsgebiete oder Wasserkörper deutlich schwieriger. Generell bedarf es noch einer deutlichen Verbesserung der Grundlagen, insbesondere bezüglicher der Quantifizierung von Wassertemperaturänderungen, Schad- und Nährstoffmobilisierungen und den äußerst komplexen biotischen Interaktionen. Nicht zuletzt ist zu beachten, dass der Klimawandel nicht der einzige Stressor ist, der unsere Gewässer belastet. Viele Gewässersysteme sind bereits durch Verschmutzung, Verbau und Wasserstandsregulierung beeinflusst. Der Klimawandel wird in diesem „Multistressorencocktail“ vermutlich deutlich intensiver wirken als in unbelasteten Systemen. Ein weiterer Verlust von Biodiversität und Ökosystemdienstleistungen (Trinkwasser, Fischfang, etc.) ist daher wahrscheinlich. Wichtige zusammenfassende Arbeiten zu dem Thema mit entsprechenden Auswirkungen auf den Menschen finden sich beispielsweise bei Kernan et al. (2010) sowie Bates et al. (2008).

Lade...
Vorschaubild
Veröffentlichung

Waves affect predator–prey interactions between fish and benthic invertebrates

2011-01, Gabel, Friederike, Stoll, Stefan, Pusch, Martin T., Fischer, Philipp, Garcia, Xavier-Francois

Little is known about the effects of waves on predator–prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking windinduced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator–prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves.

Lade...
Vorschaubild
Veröffentlichung

Spawning site selection by Eurasian perch (Perca fluviatilis L.) in relation to temperature and wave exposure

2009, Probst, Wolfgang Nikolaus, Stoll, Stefan, Hofmann, Hilmar, Fischer, Philipp, Eckmann, Reiner

The selection of spawning depth by Eurasian perch Perca fluviatilis was investigated in an experiment using artificial substrata in Lake Constance during the spawning season of 2007. The experiment compared spawning behaviour at substrata between 0.5 and 15 m depth at two sites exposed to different regimes of ship-generated wave action. The total abundance of egg ribbons did not differ significantly between the two sites, but the preferred spawning depth was deeper at the wave exposed site (5 m) compared to the sheltered site (2 m). While water temperatures could not account for the observations, differences in wave exposure may explain the different spawning depth preferences. At both sites, large egg ribbons were generally found in deeper water, and large egg ribbons occurred more frequently at the sheltered site. Because the egg ribbons of perch are likely to have a size-dependent susceptibility to hydrodynamic stress, large females may be expected to select deeper spawning locations where the effects of surface waves are considerably attenuated.