Cölfen, Helmut

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Cölfen
Vorname
Helmut
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 67
Lade...
Vorschaubild
Veröffentlichung

Analytical ultracentrifugation in colloid and polymer science : new possibilities and perspectives after 100 years

2023-07, Cölfen, Helmut

Analytical ultracentrifugation (AUC) is a classical polymer and colloid analysis technique invented by Theodor Svedberg 100 years ago. Modern hard- and software and powerful computers make it now possible to develop the methodology beyond what was possible with this technique before. This perspective aims to describe new possibilities, which extend the possibilities of AUC beyond the classical repertoire of the determination of distributions of sedimentation coefficient, particle size, and molar mass as well as stoichiometries and interaction constants of interacting systems. High-resolution simultaneous characterization of particle size and optical property distributions, investigation of nucleation by reaction in the AUC cell, characterization of particle interactions at a very high concentration, and characterization of complex fluids or osmotic pressures over large concentration ranges even crossing phase boundaries are among the discussed topics. They show that even after 100 years of successful application, AUC still has much yet unexplored potential in colloid and polymer science. Graphical Abstract This perspective paper spans from the days of invention of analytical ultracentrifugation to now including nonmainstream methodology and instrumentation, which has a huge potential for the future. This includes multiwavelength detectors, high-resolution particle size distributions, chemical reactions in the ultracentrifuge, high-concentration work, osmotic pressure distributions, and characterization of complex fluids.

Lade...
Vorschaubild
Veröffentlichung

Silica‐Functionalized Nanolimes for the Conservation of Stone Heritage

2023-04-18, Burgos‐Ruiz, Miguel, Elert, Kerstin, Ruiz‐Agudo, Encarnacion, Cölfen, Helmut, Rodriguez‐Navarro, Carlos

The relatively recent development of nanolimes (i.e., alcoholic dispersions of Ca(OH)2 nanoparticles) has paved the way for new approaches to the conservation of important art works. Despite their many benefits, nanolimes have shown limited reactivity, back-migration, poor penetration, and lack of proper bonding to silicate substrates. In this work a novel solvothermal synthesis process is presented by which extremely reactive nanostructured Ca(OH)2 particles are obtained using calcium ethoxide as the main precursor species. Moreover, it is demonstrated that this material can be easily functionalized with silica-gel derivatives under mild synthesis conditions, thereby preventing particle growth, increasing total specific surface area, enhancing reactivity, modifying colloidal behavior, and functioning as self-integrated coupling agents. Additionally, the formation of calcium silicate hydrate (CSH) nanocement is promoted by the presence of water, resulting in optimal bonding when applied to silicate substrates, as evidenced by the higher reinforcement effect produced on treated Prague sandstone specimens as compared to those consolidated with nonfunctionalized commercial nanolime. The functionalization of nanolimes is not only a promising strategy for the design of optimized consolidation treatments for the cultural heritage, but may also have important implications for the development of advanced nanomaterials for building, environmental, or biomedical applications.

Lade...
Vorschaubild
Veröffentlichung

Aufdeckung des Entstehungsmechanismus und Optimierung der Synthesebedingungen von geschichteten Doppelhydroxiden für die Sauerstoffentwicklungsreaktion

2023-02, Chen, Zongkun, Wang, Xingkun, Han, Zhongkang, Zhang, Siyuan, Pollastri, Simone, Fan, Qiqi, Qu, Zhengyao, Sarker, Debalaya, Huang, Minghua, Cölfen, Helmut

Geschichtete Doppelhydroxide (LDHs), deren Bildung stark von der OH-Konzentration abhängt, haben in verschiedenen Bereichen großes Interesse geweckt. Die Auswirkung der Echtzeit-Änderung der OH− Konzentration auf die Bildung von LDHs wurde jedoch noch nicht vollständig erforscht, da die bestehenden Synthesemethoden für die in situ Charakterisierung nicht geeignet sind. Hier bietet die gezielt entwickelte Kombination aus NH3-Gasdiffusion und in situ pH-Messung eine Lösung für das oben genannte Problem. Die so erhaltenen Ergebnisse deckten den Bildungsmechanismus auf und führten dazu, dass wir eine Bibliothek von LDHs mit den gewünschten Eigenschaften in Wasser bei Raumtemperatur ohne jegliche Additive synthetisieren konnten. Nach der Bewertung ihrer Sauerstoffentwicklungsreaktionsleistung stellten wir fest, dass FeNi-LDH mit einem Fe/Ni-Verhältnis von 25/75 eine der besten, der bisher berichteten, Leistungen aufweist.

Lade...
Vorschaubild
Veröffentlichung

Formation Of Amorphous Iron‐Calcium Phosphate With High Stability

2023, Chen, Song, Liu, Dachuan, Fu, Le, Ni, Bing, Chen, Zongkun, Knaus, Jennifer, Sturm, Elena V., Wang, Bohan, Cölfen, Helmut, Li, Bin

Amorphous iron-calcium phosphate (Fe-ACP) plays a vital role in the mechanical properties of teeth of some rodents, which are very hard, but its formation process and synthetic route remain unknown. Here, we report the synthesis and characterization of an iron-bearing amorphous calcium phosphate in the presence of ammonium iron citrate (AIC). The iron is distributed homogeneously on the nanometer scale in the resulting particles. The prepared Fe-ACP particles can be highly stable in aqueous media, including water, simulated body fluid and acetate buffer solution (pH 4). In vitro study demonstrates that these particles have good biocompatibility and osteogenic properties. Subsequently, Spark Plasma Sintering (SPS) is utilized to consolidate the initial Fe-ACP powders. The results show that the hardness of the ceramics increases with the increase of iron content, but an excess of iron leads to a rapid decline in hardness. Calcium iron phosphate ceramics with a hardness of 4 GPa can be achieved, which is higher than that of human enamel. Furthermore, the ceramics composed of iron-calcium phosphates showed enhanced acid resistance. This study provides a novel route to prepare Fe-ACP, and presents the potential role of Fe-ACP in biomineralization and as starting material to fabricate acid-resistant high-performance bioceramics.

Lade...
Vorschaubild
Veröffentlichung

The Structure, Preparation, Characterization, and Intercalation Mechanism of Layered Hydroxides Intercalated with Guest Anions

2023-06-04, Chen, Zongkun, Fan, Qiqi, Huang, Minghua, Cölfen, Helmut

Since the intercalation of anions into layered hydroxides (LHs) has a great impact not only on their nucleation and growth but also on their structure, composition, and size, the intercalation chemistry of LHs has aroused the strong interest of researchers. However, the progress in the fundamental understanding of LHs intercalated with guest anions have not been paralleled by a concomitant development of the preparation and performance improvement of such materials. Considering the guidance of a timely in-depth review for scientists in this area, a systematic introduction about the development that is made on the above-mentioned issues is highly needed but yet missing so far. Herein, recent advances in understanding the chemical composition and structure of LHs intercalated with guest anions are systematically summarized. Meanwhile, typical and emerging bottom-up synthesis methods of LHs intercalated with anions are reviewed, and the potential impact of external reaction parameters on the intercalation of anions into LHs are discussed . Besides, different analytical characterization techniques employed in the examination of guest anion-intercalated LHs are deliberated upon. Finally, although progress is slow in exploring the intercalation mechanism, as many examples as possible are included in this review and inferred the possible intercalation mechanism.

Lade...
Vorschaubild
Veröffentlichung

The nucleation of C–S–H via prenucleation clusters

2023-03-21, Sowoidnich, Thomas, Damidot, Denis, Ludwig, Horst-Michael, Germroth, J., Rosenberg, Rose, Cölfen, Helmut

The nucleation and growth of calcium–silicate–hydrate (C–S–H) is of fundamental importance for the strength development and durability of the concrete. However, the nucleation process of C–S–H is still not fully understood. The present work investigates how C–S–H nucleates by analyzing the aqueous phase of hydrating tricalcium silicate (C3S) by applying inductively coupled plasma-optical emission spectroscopy as well as analytical ultracentrifugation. The results show that the C–S–H formation follows non-classical nucleation pathways associated with the formation of prenucleation clusters (PNCs) of two types. Those PNCs are detected with high accuracy and reproducibility and are two species of the 10 in total, from which the ions (with associated water molecules) are the majority of the species. The evaluation of the density and molar mass of the species shows that the PNCs are much larger than ions, but the nucleation of C–S–H starts with the formation of liquid precursor C–S–H (droplets) with low density and high water content. The growth of these C–S–H droplets is associated with a release of water molecules and a reduction in size. The study gives experimental data on the size, density, molecular mass, and shape and outlines possible aggregation processes of the detected species.

Lade...
Vorschaubild
Veröffentlichung

Bioinspired Stabilization of Amorphous Calcium Carbonate by Carboxylated Nanocellulose Enables Mechanically Robust, Healable, and Sensing Biocomposites

2023, Wu, Wanlin, Lu, Zhixing, Lu, Canhui, Sun, Xunwen, Ni, Bing, Cölfen, Helmut, Xiong, Rui

Nature builds numerous structurally complex composites with fascinating mechanical robustness and functionalities by harnessing biopolymers and amorphous calcium carbonate (ACC). The key to successfully mimicking these natural designs is efficiently stabilizing ACC, but developing highly efficient, biodegradable, biocompatible, and sustainable stabilizing agents remains a grand challenge since anhydrous ACC is inherently unstable toward crystallization in the wet state. Inspired by the stabilized ACC in crustacean cuticles, we report the efficient stabilization ability of the most abundant biopolymer–cellulose nanofibrils (CNFs) for ACC. Through the cooperative stabilizing effect of surface carboxyl groups and a rigid segregated network, the CNFs exhibit long-term stability (more than one month) and achieved a stabilization efficiency of 3.6 and 4.4 times that of carboxymethyl cellulose (CMC) and alginate, respectively, even higher than poly(acrylic acid). The resulting CNF/ACC dispersions can be constructed into transparent composite films with the high strength of 286 MPa and toughness up to 28.5 MJ/m3, which surpass those of the so far reported synthetic biopolymer-calcium carbonate/phosphate composites. The dynamic interfacial interaction between nanocomponents also provides the composite films with good self-healing properties. Owing to their good wet stability, the composite films present high humidity sensitivity for monitoring respiration and finger contact.

Lade...
Vorschaubild
Veröffentlichung

The impact of metakaolin on the hydration of tricalcium silicate : effect of C-A-S-H precipitation

2023-04-28, Sowoidnich, Thomas, Cölfen, Helmut, Rößler, Christiane, Damidot, Denis, Ludwig, Horst-Michael

Lade...
Vorschaubild
Veröffentlichung

A Facile and Rational Method to Tailor the Symmetry of Au@Ag Nanoparticles

2023-03-04, Ni, Bing, Zhou, Jian, Stolz, Levin, Cölfen, Helmut

Precisely controlling the morphologies of plasmonic metal nanoparticles (NPs) is of great importance for many applications. Here, a facile seed-mediated growth method is demonstrated that tailors the morphologies of Au@Ag NPs from cubes/cuboids to chiral truncated cuboids/octahedra, well-defined octahedra, and tetrahedra, via simply increasing the concentrations of AgNO3 and cysteine in the halide surfactant systems. Accordingly, the particle symmetries are also tuned. The method is quite robust where seeds with distinct shapes including irregular ones can all lead to uniform Au@Ag NPs. The evolution of these shapes can be illustrated by a recently proposed symmetry-based kinematic theory (SBKT). Furthermore, SBKT shows a strategy to optimize the preparation of chiral/dissymmetric NPs, and the experimental results confirm such a dissymmetric synthesis strategy. Cuboids and octahedra with corners differently truncated are identified as two different chiral forms. The chirality of the NPs is additionally probed by electrochemistry, where the chiral NPs show enantioselectivity in the oxidation of d- and l-glucose. Altogether, the results gain fundamental insights into tailoring the plasmonic NP morphologies, and also suggest strategies to obtain chiral NPs.

Lade...
Vorschaubild
Veröffentlichung

How a Facet of a Nanocrystal Is Formed : The Concept of the Symmetry Based Kinematic Theory

2023, Ni, Bing, Gonzalez-Rubio, Guillermo, Cölfen, Helmut

Conventional nanocrystal (NC) growth mechanisms have overwhelmingly focused on the final exposed facets to explain shape evolution. However, how the final facets are formed from the initial nuclei or seeds, has not been specifically interrogated. In this concept paper, we would like to concentrate on this specific topic, and introduce the symmetry based kinematic theory (SBKT) to explain the formation and evolution of crystal facets. It is a crystallographic theory based on the classical crystal growth concepts developed to illustrate the shape evolution during the NC growth. The most important principles connecting the basic NC growth processes and morphology evolution are the preferential growth directions and the properties of kinematic waves. On the contrary, the final facets are just indications of how the crystal growth terminates, and their formation and evolution rely on the NC growth processes: surface nucleation and layer advancement. Accordingly, the SBKT could even be applied to situations where non-faceted NCs such as spheres are formed.