Person: Cölfen, Helmut
Email Address
ORCID
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name
Name
Search Results
Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model
2023-03-30, Chen, Zongkun, Schmid, Ralf, Wang, Xingkun, Fu, Mengqi, Han, Zhongkang, Fan, Qiqi, Scheer, Elke, Huang, Minghua, Nielaba, Peter, Cölfen, Helmut
Two-dimensional (2D) materials prepared by a solution-phase growth route exhibit many unique properties and are promising for use in various fields. However, simple, rational and green fabrication of target materials remains challenging due to the lack of guiding principles. Here we propose a universal qualitative model for 2D materials grown for layered and non-layered crystal structures by a solution-phase growth route; both theoretical simulation and experimental results confirm the model’s validity. This model demonstrates that 2D growth can be controlled by only tuning the reaction concentration and temperature, and has been applied to fabricate more than 30 different 2D nanomaterials in water at room temperature and in the absence of additives. Furthermore, the model shows promise for optimizing the experimental design of numerous other 2D nanomaterials.
Aufdeckung des Entstehungsmechanismus und Optimierung der Synthesebedingungen von geschichteten Doppelhydroxiden für die Sauerstoffentwicklungsreaktion
2023-02, Chen, Zongkun, Wang, Xingkun, Han, Zhongkang, Zhang, Siyuan, Pollastri, Simone, Fan, Qiqi, Qu, Zhengyao, Sarker, Debalaya, Huang, Minghua, Cölfen, Helmut
Geschichtete Doppelhydroxide (LDHs), deren Bildung stark von der OH-Konzentration abhängt, haben in verschiedenen Bereichen großes Interesse geweckt. Die Auswirkung der Echtzeit-Änderung der OH− Konzentration auf die Bildung von LDHs wurde jedoch noch nicht vollständig erforscht, da die bestehenden Synthesemethoden für die in situ Charakterisierung nicht geeignet sind. Hier bietet die gezielt entwickelte Kombination aus NH3-Gasdiffusion und in situ pH-Messung eine Lösung für das oben genannte Problem. Die so erhaltenen Ergebnisse deckten den Bildungsmechanismus auf und führten dazu, dass wir eine Bibliothek von LDHs mit den gewünschten Eigenschaften in Wasser bei Raumtemperatur ohne jegliche Additive synthetisieren konnten. Nach der Bewertung ihrer Sauerstoffentwicklungsreaktionsleistung stellten wir fest, dass FeNi-LDH mit einem Fe/Ni-Verhältnis von 25/75 eine der besten, der bisher berichteten, Leistungen aufweist.
Phage Display Screening as a Rational Approach to Design Additives for Selective Crystallization Control in Construction Systems
2023, Madeja, Benjamin, Wilke, Patrick, Schreiner, Eduard, Konradi, Rupert, Scheck, Johanna, Bizzozero, Julien, Nicoleau, Luc, Wagner, Elisabeth, Cölfen, Helmut, Kellermeier, Matthias
The design of additives showing strong and selective interactions with certain target surfaces is key to crystallization control in applied reactive multicomponent systems. While suitable chemical motifs can be found through semi-empirical trial-and-error procedures, bioinspired selection techniques offer a more rationally driven approach and explore a much larger space of possible combinations in a single assay. Here we use phage display screening to characterize the surfaces of crystalline gypsum, a mineral of broad relevance for construction applications. Based on next-generation sequencing of phages enriched during the screening process, we identify a triplet of amino acids, DYH, as main driver for adsorption on the mineral substrate. Furthermore, oligopeptides containing this motif prove to exert their influence in a strictly selective manner during the hydration of cements, where the sulfate reaction (initial setting) is strongly retarded while the silicate reaction (final hardening) remains unaffected. In a final step, these desired additive characteristics are successfully translated from the level of peptides to that of scalable synthetic copolymers. The approach described in this work demonstrates how modern biotechnological methods can be leveraged for the systematic development of efficient crystallization additives for materials science.
Cross-Linking of Apatite–Gelatin Nanocomposites as the Basis for Dentine Replacement Materials
2023, Konsek, Julian, Knaus, Jennifer, Avaro, Jonathan Thomas, Sturm, Elena V., Cölfen, Helmut
A novel approach for the production of a bioinspired dentine replacement material is introduced. An apatite–gelatin nanocomposite material was cross-linked with various cross-linkers. These nanocomposites have a high resemblance to mammalian dentine regarding its composition and properties. A precipitation reaction was used to produce apatite–gelatin nanocomposites as starting materials. Cross-linking of the gelatin has to be performed to produce dentine-like and thus tough and robust apatite–gelatin nanocomposites. Therefore, the efficacy of various protein cross-linkers was tested, and the resulting materials were characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and EXAFS as well as CHNS analysis and tested for their mechanical performance using Vickers hardness measurements as well as for their dissolution stability in EDTA. Especially glutaraldehyde, proanthocyanidins, and transglutaminase gave promising results with hardness values of up to 63 HV0.2. To further improve the material properties, we combined the effective cross-linker transglutaminase with casein, which led to an improved interconnection between the single nanocomposite platelets. By doing so, a cross-linked composite was obtained, which shows even higher hardness values than does human dentine, at 76 HV0.2. The combination of apatite–gelatin nanocomposites with an effective cross-linker resulted in a bioinspired material with composition and properties close to those of human dentine.
The nucleation of C–S–H via prenucleation clusters
2023-03-21, Sowoidnich, Thomas, Damidot, Denis, Ludwig, Horst-Michael, Germroth, J., Rosenberg, Rose, Cölfen, Helmut
The nucleation and growth of calcium–silicate–hydrate (C–S–H) is of fundamental importance for the strength development and durability of the concrete. However, the nucleation process of C–S–H is still not fully understood. The present work investigates how C–S–H nucleates by analyzing the aqueous phase of hydrating tricalcium silicate (C3S) by applying inductively coupled plasma-optical emission spectroscopy as well as analytical ultracentrifugation. The results show that the C–S–H formation follows non-classical nucleation pathways associated with the formation of prenucleation clusters (PNCs) of two types. Those PNCs are detected with high accuracy and reproducibility and are two species of the 10 in total, from which the ions (with associated water molecules) are the majority of the species. The evaluation of the density and molar mass of the species shows that the PNCs are much larger than ions, but the nucleation of C–S–H starts with the formation of liquid precursor C–S–H (droplets) with low density and high water content. The growth of these C–S–H droplets is associated with a release of water molecules and a reduction in size. The study gives experimental data on the size, density, molecular mass, and shape and outlines possible aggregation processes of the detected species.
Tuning the growth morphology of gypsum crystals by polymers
2023-02, Madeja, Benjamin, Avaro, Jonathan Thomas, Van Driessche, Alexander E.S., Rückel, Markus, Wagner, Elisabeth, Cölfen, Helmut, Kellermeier, Matthias
True control over the morphology of gypsum crystals formed via homogeneous precipitation from solution has rarely been reported in the literature. In this work, we have tested a large number of dissolved additives (polymers as well as small molecules) with respect to their ability to alter the typical microscopic appearance of precipitated gypsum powders, which is usually characterized by a mixture of single-crystalline needles and twinned plates. Among the many additives studied, a copolymer of vinylpyrrolidone and acrylic acid (PVP-co-PAA) was identified as powerful growth modifier for gypsum already at low concentrations. In both slow titration and rapid mixing experiments, unconventional blocky crystals with tilted stacking edges as well as pseudo-hexagonal plates could be synthesized reproducibly with the help of the copolymer. Systematic characterization revealed the dynamic mode of action of the newly identified growth modifier, which seems to stabilize a highly reactive face of gypsum and promote the formation of macrosteps. The degree of morphological control achieved in this way is unprecedented in the case of calcium sulfate and may devise entirely new concepts for additive design in the areas of plasters and cementitious materials, gypsum wallboard production and/or scale prevention.
A Facile and Rational Method to Tailor the Symmetry of Au@Ag Nanoparticles
2023-03-04, Ni, Bing, Zhou, Jian, Stolz, Levin, Cölfen, Helmut
Precisely controlling the morphologies of plasmonic metal nanoparticles (NPs) is of great importance for many applications. Here, a facile seed-mediated growth method is demonstrated that tailors the morphologies of Au@Ag NPs from cubes/cuboids to chiral truncated cuboids/octahedra, well-defined octahedra, and tetrahedra, via simply increasing the concentrations of AgNO3 and cysteine in the halide surfactant systems. Accordingly, the particle symmetries are also tuned. The method is quite robust where seeds with distinct shapes including irregular ones can all lead to uniform Au@Ag NPs. The evolution of these shapes can be illustrated by a recently proposed symmetry-based kinematic theory (SBKT). Furthermore, SBKT shows a strategy to optimize the preparation of chiral/dissymmetric NPs, and the experimental results confirm such a dissymmetric synthesis strategy. Cuboids and octahedra with corners differently truncated are identified as two different chiral forms. The chirality of the NPs is additionally probed by electrochemistry, where the chiral NPs show enantioselectivity in the oxidation of d- and l-glucose. Altogether, the results gain fundamental insights into tailoring the plasmonic NP morphologies, and also suggest strategies to obtain chiral NPs.
How a Facet of a Nanocrystal Is Formed : The Concept of the Symmetry Based Kinematic Theory
2023, Ni, Bing, Gonzalez-Rubio, Guillermo, Cölfen, Helmut
Conventional nanocrystal (NC) growth mechanisms have overwhelmingly focused on the final exposed facets to explain shape evolution. However, how the final facets are formed from the initial nuclei or seeds, has not been specifically interrogated. In this concept paper, we would like to concentrate on this specific topic, and introduce the symmetry based kinematic theory (SBKT) to explain the formation and evolution of crystal facets. It is a crystallographic theory based on the classical crystal growth concepts developed to illustrate the shape evolution during the NC growth. The most important principles connecting the basic NC growth processes and morphology evolution are the preferential growth directions and the properties of kinematic waves. On the contrary, the final facets are just indications of how the crystal growth terminates, and their formation and evolution rely on the NC growth processes: surface nucleation and layer advancement. Accordingly, the SBKT could even be applied to situations where non-faceted NCs such as spheres are formed.
A Nanoparticle-Based Model System for the Study of Heterogeneous Nucleation Phenomena
2023, Göppert, Ann-Kathrin, Gonzalez-Rubio, Guillermo, Schnitzlein, Simon, Cölfen, Helmut
Heterogeneous nucleation processes are involved in many important phenomena in nature, including devastating human diseases caused by amyloid structures or the harmful frost formed on fruits. However, understanding them is challenging due to the difficulties of characterizing the initial stages of the process occurring at the interface between the nucleation medium and the substrate surfaces. This work implements a model system based on gold nanoparticles to investigate the effect of particle surface chemistry and substrate properties on heterogeneous nucleation processes. Using widely available techniques such as UV–vis–NIR spectroscopy and light microscopy, gold nanoparticle-based superstructure formation was studied in the presence of substrates with different hydrophilicity and electrostatic charges. The results were evaluated on grounds of classical nucleation theory (CNT) to reveal kinetic and thermodynamic contributions of the heterogeneous nucleation process. In contrast to nucleation from ions, the kinetic contributions toward nucleation turned out to be larger than the thermodynamic contributions for the nanoparticle building blocks. Electrostatic interactions between substrates and nanoparticles with opposite charges were crucial to enhancing the nucleation rates and decreasing the nucleation barrier of superstructure formation. Thereby, the described strategy is demonstrated advantageous for characterizing physicochemical aspects of heterogeneous nucleation processes in a simple and accessible manner, which could be potentially explored to study more complex nucleation phenomena.