Kroth, Peter G.

Peter G.

Suchergebnisse Publikationen

Gerade angezeigt 1 - 3 von 3

Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum

2019-09-13, Buck, Jochen Mario, Sherman, Jonathan, Río Bártulos, Carolina, Serif, Manuel, Halder, Marc, Henkel, Jan, Falciatore, Angela, Lavaud, Johann, Kroth, Peter G., Lepetit, Bernard

Diatoms possess an impressive capacity for rapidly inducible thermal dissipation of excess absorbed energy (qE), provided by the xanthophyll diatoxanthin and Lhcx proteins. By knocking out the Lhcx1 and Lhcx2 genes individually in Phaeodactylum tricornutum strain 4 and complementing the knockout lines with different Lhcx proteins, multiple mutants with varying qE capacities are obtained, ranging from zero to high values. We demonstrate that qE is entirely dependent on the concerted action of diatoxanthin and Lhcx proteins, with Lhcx1, Lhcx2 and Lhcx3 having similar functions. Moreover, we establish a clear link between Lhcx1/2/3 mediated inducible thermal energy dissipation and a reduction in the functional absorption cross-section of photosystem II. This regulation of the functional absorption cross-section can be tuned by altered Lhcx protein expression in response to environmental conditions. Our results provide a holistic understanding of the rapidly inducible thermal energy dissipation process and its mechanistic implications in diatoms.


The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis

2017-04, Lepetit, Bernard, Gélin, Gautier, Lepetit, Mariana, Sturm, Sabine, Vugrinec, Sascha, Rogato, Alessandra, Kroth, Peter G., Falciatore, Angela, Lavaud, Johann

Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown.

We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included.

All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure.

Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions.


High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool

2013-02, Lepetit, Bernard, Sturm, Sabine, Rogato, Alessandra, Gruber, Ansgar, Sachse, Matthias, Falciatore, Angela, Kroth, Peter G., Lavaud, Johann

In diatoms, the process of energy-dependent chlorophyll fluorescence quenching (qE) has an important role in photoprotection. Three components are essential for qE: (1) the light-dependent generation of a transthylakoidal proton gradient; (2) the deepoxidation of the xanthophyll diadinoxanthin (Dd) into diatoxanthin (Dt); and (3) specific nucleus-encoded antenna proteins, called Light Harvesting Complex Protein X (LHCX). We used the model diatom Phaeodactylum tricornutum to investigate the concerted light acclimation response of the qE key components LHCX, proton gradient, and xanthophyll cycle pigments (Dd+Dt) and to identify the intracellular light-responsive trigger. At high-light exposure, the up-regulation of three of the LHCX genes and the de novo synthesis of Dd+Dt led to a pronounced rise of qE. By inhibiting either the conversion of Dd to Dt or the translation of LHCX genes, qE amplification was abolished and the diatom cells suffered from stronger photoinhibition. Artificial modification of the redox state of the plastoquinone (PQ) pool via 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone resulted in a disturbance of Dd+Dt synthesis in an opposite way. Moreover, we could increase the transcription of two of the four LHCX genes under low-light conditions by reducing the PQ pool using 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone. Altogether, our results underline the central role of the redox state of the PQ pool in the light acclimation of diatoms. Additionally, they emphasize strong evidence for the existence of a plastid-to-nucleus retrograde signaling mechanism in an organism with plastids that derived from secondary endosymbiosis.