Person: Petersen, Felix
Email Address
ORCID
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name
Name
Search Results
GenDR : A Generalized Differentiable Renderer
2022, Petersen, Felix, Goldlücke, Bastian, Borgelt, Christian, Deussen, Oliver
In this work, we present and study a generalized family of differentiable renderers. We discuss from scratch which components are necessary for differentiable rendering and formalize the requirements for each component. We instantiate our general differentiable renderer, which generalizes existing differentiable renderers like SoftRas and DIB-R, with an array of different smoothing distributions to cover a large spectrum of reasonable settings. We evaluate an array of differentiable renderer instantiations on the popular ShapeNet 3D reconstruction benchmark and analyze the implications of our results. Surprisingly, the simple uniform distribution yields the best overall results when averaged over 13 classes; in general, however, the optimal choice of distribution heavily depends on the task.
Differentiable Sorting Networks for Scalable Sorting and Ranking Supervision
2021, Petersen, Felix, Borgelt, Christian, Kuehne, Hilde, Deussen, Oliver
Sorting and ranking supervision is a method for training neural networks end-to-end based on ordering constraints. That is, the ground truth order of sets of samples is known, while their absolute values remain unsupervised. For that, we propose differentiable sorting networks by relaxing their pairwise conditional swap operations. To address the problems of vanishing gradients and extensive blurring that arise with larger numbers of layers, we propose mapping activations to regions with moderate gradients. We consider odd-even as well as bitonic sorting networks, which outperform existing relaxations of the sorting operation. We show that bitonic sorting networks can achieve stable training on large input sets of up to 1024 elements.
Style Agnostic 3D Reconstruction via Adversarial Style Transfer
2022, Petersen, Felix, Goldlücke, Bastian, Deussen, Oliver, Kuehne, Hilde
Reconstructing the 3D geometry of an object from an image is a major challenge in computer vision. Recently introduced differentiable renderers can be leveraged to learn the 3D geometry of objects from 2D images, but those approaches require additional supervision to enable the renderer to produce an output that can be compared to the input image. This can be scene information or constraints such as object silhouettes, uniform backgrounds, material, texture, and lighting. In this paper, we propose an approach that enables a differentiable rendering-based learning of 3D objects from images with backgrounds without the need for silhouette supervision. Instead of trying to render an image close to the input, we propose an adversarial style-transfer and domain adaptation pipeline that allows to translate the input image domain to the rendered image domain. This allows us to directly compare between a translated image and the differentiable rendering of a 3D object reconstruction in order to train the 3D object reconstruction network. We show that the approach learns 3D geometry from images with backgrounds and provides a better performance than constrained methods for single-view 3D object reconstruction on this task.
Learning with Differentiable Algorithms
2022, Petersen, Felix
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.