Merhof, Dorit

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Merhof
Vorname
Dorit
Name
Weiterer Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 2 von 2
Lade...
Vorschaubild
Veröffentlichung

DTI-based visualization strategies for the pyramidal tract

2006, Enders, Frank, Merhof, Dorit, Hastreiter, Peter, Stamminger, Marc, Fahlbusch, Rudolf, Nimsky, Christopher

With the introduction of diffusion tensor imaging a method became available which is capable to detect major white matter tracts in-vivo. For the visualization of the data several techniques have been developed which, however, show various drawbacks for a comprehensive medical and technical analysis. Although fractional anisotropy maps and streamlines, typically denoted as fiber tracking, are widely used they are suboptimal in several situations of pre- and intraoperative application. Going beyond these standard approaches, several new and more advanced visualization techniques, namely directional volume growing, hulls and hardware-accelerated glyphs are introduced for an improved exploration of the pyramidal tract. The approaches have been evaluated with respect to diagnosis and therapy planning in neurosurgery. Overall, it is shown that the presented strategies for the visualization of diffusion tensor imaging data are capable to significantly support neurosurgical planning and intervention.

Lade...
Vorschaubild
Veröffentlichung

Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking

2006, Nimsky, Christopher, Ganslandt, Oliver, Merhof, Dorit, Sorensen, A. Gregory, Fahlbusch, Rudolf

Functional neuronavigation allows intraoperative visualization of cortical eloquent brain areas. Major white matter tracts, such as the pyramidal tract, can be delineated by diffusion-tensor-imaging based fiber tracking. These tractography data were integrated into 3-D datasets applied for neuronavigation by rigid registration of the diffusion images with standard anatomical image data so that their course could be superimposed onto the surgical field during resection of gliomas. Intraoperative high-field magnetic resonance imaging was used to compensate for the effects of brain shift, which amounted up to 8 mm. Despite image distortion of echo planar images, which was identified by non-linear registration techniques, navigation was reliable. In none of the 19 patients new postoperative neurological deficits were encountered. Intraoperative visualization of major white matter tracts allows save resection of gliomas near eloquent brain areas. A possible shifting of the pyramidal tract has to be taken into account after major tumor parts are resected.