Dietrich, Daniel R.

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Dietrich
Vorname
Daniel R.
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 10 von 10
Lade...
Vorschaubild
Veröffentlichung

Is Toxin-Producing Planktothrix sp. an Emerging Species in Lake Constance?

2021-09-17, Fournier, Corentin, Riehle, Eva, Dietrich, Daniel R., Schleheck, David

Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC–MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake.

Lade...
Vorschaubild
Veröffentlichung

Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake

2021, Wood, Susanna A., Puddick, Jonathan, Hawes, Ian, Steiner, Konstanze, Dietrich, Daniel R., Hamilton, David P.

Microcystis is a bloom-forming genus of cyanobacteria with some genotypes that produce highly toxic microcystin hepatotoxins. In waterbodies where biological and physical factors are relatively homogenous, toxin quotas (the average amount of toxin per cell), at a single point in time, are expected to be relatively constant. In this study we challenged this assumption by investigating the spatial distribution of microcystin quotas at a single point in time on two separate occasions in a lake with a major Microcystis bloom. Microcystis cell concentrations varied widely across the lake on both sampling occasions (730- and 137-fold) together with microcystin quotas (148- and 362-fold). Cell concentrations and microcystin quotas were strongly positively correlated (R2 = 0.89, P < 0.001, n = 28; R2 = 0.67, P < 0.001, n = 25). Analysis of Microcystis strains using high-throughput sequencing of the 16S-23S rRNA intergenic spacer region showed no relationship between microcystin quota and the relative abundance of specific sequences. Collectively, the results of this study indicate an association between microcystin production and cell density that magnifies the potential for bloom toxicity at elevated cell concentrations.

Lade...
Vorschaubild
Veröffentlichung

Is a Central Sediment Sample Sufficient? : Exploring Spatial and Temporal Microbial Diversity in a Small Lake

2020-09-09, Weisbrod, Barbara, Wood, Susanna A., Steiner, Konstanze, Whyte-Wilding, Ruby, Puddick, Jonathan, Laroche, Olivier, Dietrich, Daniel R.

(1) Background: Paleolimnological studies use sediment cores to explore long-term changes in lake ecology, including occurrences of harmful cyanobacterial blooms. Most studies are based on single cores, assuming this is representative of the whole lake, but data on small-scale spatial variability of microbial communities in lake sediment are scarce.
(2) Methods: Surface sediments (top 0.5 cm) from 12 sites (n = 36) and two sediment cores were collected in Lake Rotorua (New Zealand). Bacterial community (16S rRNA metabarcoding), Microcystis specific 16S rRNA, microcystin synthetase gene E (mcyE) and microcystins (MCs) were assessed. Radionuclide measurements (210Pb, 137Cs) were used to date sediments.
(3) Results: Bacterial community, based on relative abundances, differed significantly between surface sediment sites (p < 0.001) but the majority of bacterial amplicon sequence variants (88.8%) were shared. Despite intense MC producing Microcystis blooms in the past, no Microcystis specific 16S rRNA, mcyE and MCs were found in surface sediments but occurred deeper in sediment cores (approximately 1950′s). 210Pb measurements showed a disturbed profile, similar to patterns previously observed, as a result of earthquakes.
(4) Conclusions: A single sediment core can capture dominant microbial communities. Toxin producing Microcystis blooms are a recent phenomenon in Lake Rotorua. We posit that the absence of Microcystis from the surface sediments is a consequence of the Kaikoura earthquake two years prior to our sampling.

Lade...
Vorschaubild
Veröffentlichung

Machine learning prediction of cyanobacterial toxin (microcystin) toxicodynamics in humans

2020, Altaner, Stefan, Jaeger, Sabrina, Fotler, Regina, Zemskov, Ivan, Wittmann, Valentin, Schreiber, Falk, Dietrich, Daniel R.

Microcystins (MC) represent a family of cyclic peptides with approx. 250 congeners presumed harmful to human health due to their ability to inhibit ser/thr-proteinphosphatases (PPP), albeit all hazard and risk assessments (RA) are based on data of one MC-congener (MC-LR) only. MC congener structural diversity is a challenge for the risk assessment of these toxins, especially as several different PPPs have to be included in the RA. Consequently, the inhibition of PPP1, PPP2A and PPP5 was determined with 18 structurally different MC and demonstrated MC congener dependent inhibition activity and a lower susceptibility of PPP5 to inhibition than PPP1 and PPP2A. The latter data were employed to train a machine learning algorithm that should allow prediction of PPP inhibition (toxicity) based on MCs 2D chemical structure. IC50 values were classified in toxicity classes and three machine learning models were used to predict the toxicity class, resulting in 80-90% correct predictions.

Lade...
Vorschaubild
Veröffentlichung

The EU chemicals strategy for sustainability : in support of the BfR position

2021-08-07, Barile, Frank A., Berry, Sir Colin, Blaauboer, Bas, Boobis, Alan, Bolt, Herrmann M., Borgert, Christopher, Dekant, Wolfgang, Dietrich, Daniel R., Domingo, Jose L., Greim, Helmut

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.

Lade...
Vorschaubild
Veröffentlichung

Examination of microcystin neurotoxicity using central and peripheral human neurons

2021, Klima, Stefanie, Suciu, Ilinca, Hoelting, Lisa, Gutbier, Simon, Waldmann, Tanja, Dietrich, Daniel R., Leist, Marcel

Microcystins (MC) are a group of cyanobacterial toxins that comprises MC-LF and other cyclic heptapeptides, best known as potent hepatotoxicants. Cell culture and epidemiological studies suggest that MC might also affect the nervous system, when there is systemic exposure e.g. via drinking water or food. We asked whether in vitro studies with human neurons could provide estimates on the neurotoxicity hazard of MC-LF. First, we used LUHMES neurons, a well-established test system for neurotoxicants and neuropathological processes. These central nervous system cells expressed OATP1A2, a presumed carrier of MC-LF, and we observed selective neurite toxicity in the µM range (EC20 = 3.3 µM ≈ 3.3 µg/ml). Toxicity paralleled transcriptome changes pointed towards attenuated cell maintenance and biosynthetic processes. Prolonged exposure for up to four days did not increase toxicity. As a second model, we used human dorsal root ganglia-like neurons. These peripheral nervous system cells represent parts of the nervous system not protected by the blood brain barrier in humans. Toxicity was observed in a similar concentration range (EC20 = 7.4 µM). We conclude that MC-LF poses a potential neurotoxic hazard in humans. The adverse effect concentrations observed here were orders of magnitude higher than those presumed to be encountered after normal nutritional or environmental exposure. However, the low µM concentrations found to be toxic are close to levels that may be reached after very excessive algae supplement intake.

Lade...
Vorschaubild
Veröffentlichung

Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity : how to evaluate the risk of the S-EDCs?

2020-07, Autrup, Herman, Barile, Frank A., Berry, Sir Colin, Blaauboer, Bas J., Boobis, Alan, Bolt, Herrmann, Borgert, Christopher J., Dekant, Wolfgang, Dietrich, Daniel R., Greim, Helmut

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.

Lade...
Vorschaubild
Veröffentlichung

Interdisciplinary Reservoir Management : a Tool for Sustainable Water Resources Management

2021-04-18, Daus, Milan, Koberger, Katharina, Koca, Kaan, Beckers, Felix, Encinas Fernández, Jorge, Weisbrod, Barbara, Dietrich, Daniel R., Hofmann, Hilmar, Martin-Creuzburg, Dominik, Peeters, Frank

Reservoirs are a common way to store and retain water serving for a multitude of purposes like storage of drinking and irrigation water, recreation, flood protection, navigation, and hydropower production, and have been built since centuries. Today, few reservoirs serve only one purpose, which requires management of present demands and interests. Since each reservoir project will cause negative impacts alongside desired advantages both on a local, regional and global scale, it is even more urgent to develop a common management framework in an attempt to mitigate negative impacts, incorporate different demands and make them visible within the discourse in order to avoid conflicts from early on. The scientific publications on reservoirs are manifold, yet a comprehensive and integrative holistic tool about management of this infrastructure is not available. Therefore, a comprehensive and integrated conceptual tool was developed and proposed by the authors of this paper that can contribute to the sustainable management of existing reservoirs. The tool presented herein is based on the results from the interdisciplinary CHARM (CHAllenges of Reservoir Management) project as well as the condensed outcome of relevant literature to aid and enhance knowledge of reservoir management. The incorporated results are based on field, laboratory and empirical social research. The project CHARM focused on five different aspects related to existing reservoirs in southern Germany (Schwarzenbachtalsperre, Franconian Lake District), namely: sedimentation of reservoirs, biostabilisation of fine sediments, toxic cyanobacteria(l) (blooms), greenhouse gas emissions from reservoirs and social contestation, respectively consent. These five research foci contributed to the topics and setup of a conceptual tool, put together by the research consortium via delphi questioning, which can be found alongside this publication to provide insights for experts and laymen. Conceptualising and analysing the management in combination with quantitative and qualitative data in one descriptive tool presents a novelty for the case studies and area of research. The distribution within the scientific community and interested public will possibly make a positive contribution to the goal of sustainable water resources management in the future.

Lade...
Vorschaubild
Veröffentlichung

Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity : How to evaluate the risk of the S-EDCs?

2020-10-01, Autrup, Herman, Barile, Frank A., Berry, Sir Colin, Blaauboer, Bas J., Boobis, Alan, Bolt, Herrmann, Borgert, Christopher J., Dekant, Wolfgang, Dietrich, Daniel R., Greim, Helmut

Lade...
Vorschaubild
Veröffentlichung

Internationalization of read-across as a validated new approach method (NAM) for regulatory toxicology

2020, Rovida, Costanza, Barton-Maclaren, Tara, Benfenati, Emilio, Caloni, Francesca, Chandrasekera, Charu, Dietrich, Daniel R., Kisitu, Jaffar, Leist, Marcel, Pallocca, Giorgia, Hartung, Thomas

Read-across (RAx) translates available information from well-characterized chemicals to the substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g. EU-REACH) already allow this procedure to be used to waive new in vivo tests. The decision to prepare a review on the state of the art of RAx as a tool for risk assessment for regulatory purposes was taken during a workshop with international experts in Ranco, Italy in July 2018. Three major issues were identified that need optimisation to allow a higher regulatory acceptance rate of the RAx procedure: (i) the definition of similarity of source and target, (ii) the translation of biological/toxicological activity of source to target, in the RAx procedure, and (iii) how to deal with issues of ADME that may differ between source and target. The use of new approach methodologies (NAM) was discussed as one of the most important innovations to improve the acceptability of RAx. At present, NAM data may be used to confirm chemical and toxicological similarity. In the future, the use of NAM may be broadened to fully characterize the hazard and toxicokinetic properties of RAx compounds. Concerning available guidance, documents on Good Read-Across Practice (GRAP) and on best practices to perform and evaluate the RAx process were identified. Here, in particular the RAx guidance, being worked out by the European Commission’s H2020 project EU-ToxRisk, together with many external partners with regulatory experience, is given.