Dietrich, Daniel R.

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Dietrich
Vorname
Daniel R.
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 9 von 9
Lade...
Vorschaubild
Veröffentlichung

Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany

2009, Ernst, Bernhard, Höger, Stefan J., O´Brien, Evelyn, Dietrich, Daniel R.

Regular occurrences of the cyanobacterium Planktothrix rubescens have been observed in several lakes that have undergone recent re-oligotrophication, e.g. Lake Ammersee. Planktothrix species are known to produce microcystins, potent phosphatase inhibitors that have been associated with morbidities and mortalities in humans and animals. The aim of this study was to characterise the temporal and spatial abundance and toxicity of P. rubescens in Lake Ammersee.
P. rubescens cell densities and biovolumes were calculated via fluorescence image analyses. P. rubescens was present during the entire observation period from 1999 to 2004, albeit at different cell densities. Maximum biovolumes of 45 cm³ m‾² were observed in May 2001. Filaments were regularly distributed over the entire water column during winter and stratified in distinct metalimnic layers during summer, reaching maximum cell densities of ≤15,000 (winter) and ≤77,000 cells ml‾¹ (summer). The results demonstrate that P. rubescens abundance is strongly influenced by water transparency, i.e. illumination in the metalimnion. Moreover, the P. rubescens abundance appears to result from regular phosphate depletion in the epilimnion. possibly additionally benefiting from high nitrogen loads.
Microcystin (MC) was detectable in 27 and 38 of 54 seston samples via HPLC and Adda-ELISA measurements, respectively. The main microcystin congeners in the seston samples were [Asp³]-MC-RR and [Asp³,Dhb7]-MC-RR. Microcystin concentrations correlated significantly with the respective phycoerythrin (PE)-concentrations. The variation in the MC/PE-ratios was low suggesting that the microcystin production of P. rubescens in Lake Ammersee is consistent and indicates that the appearance of P. rubescens coincides with measurable microcystin levels. Moreover, the observation of pronounced metalimnic oxygen depletions appears to be causally related to recurring high P. rubescens abundance.
In conclusion the results suggest that aquatic organisms such as indigenous fish populations (e.g. coregonids) are regularly confronted with potentially adverse P. rubescens densities, which might provide a possible explanation for the often observed impaired health and growth retardation of coregonid populations in P. rubescens containing pre-alpine lakes.

Lade...
Vorschaubild
Veröffentlichung

Characterization of microcystin production in an Antarctic cyanobacterial mat community

2006, Jungblut, Anne-Dorothee, Höger, Stefan J., Mountfort, Doug, Hitzfeld, Bettina C., Dietrich, Daniel R., Neilan, Brett A.

Cyanobacteria are well known for their production of non-ribosomal cyclic peptide toxins, including microcystin, in temperate and tropical regions, however, the production of these compounds in extremely cold environments is still largely unexplored. Therefore, we investigated the production of protein phosphatase inhibiting microcystins by Antarctic cyanobacteria. We have identified microcystin-LR and for the first time [d-Asp3] microcystin-LR by mass spectrometric analysis in Antarctic cyanobacteria. The microcystins were extracted from a benthic microbial community that was sampled from a meltwater pond (Fresh Pond, McMurdo Ice Shelf, Antarctica). The extracted cyanobacterial cyclic peptides were equivalent to 11.4 ng MC-LR per mg dry weight by semi-quantitative analyses using HPLC-DAD and the protein phosphatase inhibition assay. Furthermore, we were able to identify the presence of cyanobacterial non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes in total DNA extracts from the mat community.

Lade...
Vorschaubild
Veröffentlichung

Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin

2005, Fischer, Werner Jürgen, Altheimer, Sylvia, Cattori, Valentino, Meier, Peter J., Dietrich, Daniel R., Hagenbuch, Bruno

Microcystins are toxins produced by freshwater cyanobacteria. They are cyclic heptapeptides that exhibit hepato- and neurotoxicity. However, the transport systems that mediate uptake of microcystins into hepatocytes and across the blood brain barrier have not yet been identified. Using the Xenopus laevis oocyte expression system we tested whether members of the organic anion transporting polypeptide superfamily (rodent: Oatps; human: OATPs) are involved in transport of the most common microcystin variant microcystin-LR by measuring uptake of a radiolabeled derivative dihydromicrocystin-LR. Among the tested Oatps/OATPs, rat Oatp1b2, human OATP1B1, human OATP1B3, and human OATP1A2 transported microcystin-LR 2- to 5-fold above water-injected control oocytes. This microcystin-LR transport was inhibited by co-incubation with the known Oatp/OATP substrates taurocholate (TC) and bromosulfophthalein (BSP). Microcystin-LR transport mediated by the human OATPs was further characterized and showed saturability with increasing microcystin-LR concentrations. The apparent Km values amounted to 7 ± 3 μM for OATP1B1, 9 ± 3 μM for OATP1B3, and 20 ± 8 μM for OATP1A2. No microcystin-LR transport was observed in oocytes expressing Oatp1a1, Oatp1a4, and OATP2B1. These results may explain some of the observed organ-specific toxicity of microcystin-LR. Oatp1b2, OATP1B1, and OATP1B3 are responsible for microcystin transport into hepatocytes, whereas OATP1A2 mediates microcystin-LR transport across the blood brain barrier.

Lade...
Vorschaubild
Veröffentlichung

Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells

2009, Feurstein, Daniel, Holst, K., Fischer, Andreas, Dietrich, Daniel R.

Microcystins (MCs) are naturally occurring cyclic heptapeptides that exhibit hepato-, nephro- and possibly neurotoxic effects in mammals. Organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on symptoms of neurotoxicity in MC-intoxicated patients and the presence of Oatp/OATP at the blood-brainbarrier (BBB) and blood-cerebrospinal-f1uid-barrier (BCFB) it is hypothesized that MCs can be transported across the BBB/BCFB in an Oatp/OATP-dependent manner and can induce toxicity in brain cells via inhibition of protein phosphatase (PP). To test these hypotheses. the presence of murine Oatp (rnOatp) in primary murine whole brain cells (mWBC) was invt'stigated at the mRNA and protein level. MC transport was tested by exposing mWBCs to three different MC-congeners (MC-LR, -LW, -LFJ with/without co-incubation with the OATP/Oatp-substrates taurocholate (TC) and bromosulfophthalein (BSP). Uptake of MCs and cytotoxicity was demonstrated via MC-Western blot analysis, immunocytochemistry, cell viability and PP inhibition assays. All MC congeners bound covalently and inhibited mWBC PP. MC-LF was the most cytotoxic congener followed by -LW and -LR. The lowest toxin concentration significantly reducing mWBC viability after 48 h exposure was 400 nM (MC-LF). Uptake of MCs into mWBCs was inhibited via co-incubation with excess TC (50 and 500 pM) and BSP (50 pM). MC-Western blot analys is demonstrated a concentration-dependent accumulation of MCs. In conclusion, the in vieTO data support the assumed MC-congener-dependent uptake in a mOatp-associated manner and cytotoxicity of MCs in primary murine whole brain cells.

Lade...
Vorschaubild
Veröffentlichung

Determination of the filamentous cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system

2006, Ernst, Bernhard, Neser, Stephan, O'Brien, Evelyn, Höger, Stefan J., Dietrich, Daniel R.

Cyanobacteria occur in surface waters worldwide. Many of these produce peptides and/or alkaloids, which can present a risk for animal and human health. Effective risk assessment and management requires continuous and precise observation and quantification of cyanobacterial cell densities. In this respect, quantification of filamentous Planktothrix species is problematic. The aim of this study was to develop an automated system to count filamentous Planktothrix rubescens using image processing. Furthermore, this study aimed to assess optimum sample volumes and filament density for measurement precision and to validate image processing measurement of P. rubescens for an effective risk assessment.
Three environmental samples and one cultured sample of P. rubescens were collected by filtration onto nitrocellulose filters. Filament lengths were determined using fluorescence microscopy combined with an image processor. Cell density could be calculated from the resulting images. Cyanobacteria could easily be discriminated from algae via their fluorescence properties. The results were found to be independent of the mode of image acquisition. The precision of total filament length determination was dependent on the total filament length on the filter, i.e. analyses of highest precision could be expected for filters containing 2000 20,000 μm filaments per mm2. When using suitable filtration volumes, the detection limits of the described method are sufficient for an effective risk assessment. To summarise, this procedure is a fast, easy and accurate method to determine cell densities of filamentous P. rubescens in water samples without costly and tedious manual handling.

Lade...
Vorschaubild
Veröffentlichung

Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

2005, Höger, Stefan J., Hitzfeld, Bettina C., Dietrich, Daniel R.

Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized.

Lade...
Vorschaubild
Veröffentlichung

Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens

2007, Ernst, Bernhard, Höger, Stefan J., O'Brien, Evelyn, Dietrich, Daniel R.

Planktothrix rubescens belongs to the most ubiquitous cyanobacterial species in mesotrophic and oligotrophic lakes in the pre-alpine regions. In most of these lakes, coregonids are among the dominant species of the ichthyofauna with great importance for the professional fishery. A possible link between the occurrence of toxic Planktothrix blooms and the recurrent slumps in coregonid yields has been suggested. Indeed, acute toxic effects of microcystins and other cyanobacterial toxins have been shown for various fish species. However, chronic exposure scenarios appear to be more common and thus more environmentally realistic than acute intoxications. The aim of this study was therefore to investigate the physiological stress response and organ pathology in coregonids sub-chronically exposed to ambient water containing low, medium and high P. rubescens densities, known to be typical of pre-alpine lakes. Coregonid hatchlings were exposed in four tanks containing 0 (sham-control) and approximately 1500 (low), 15,000 (medium) and 55,000 (high) P. rubescens cells/ml for up to 28 days. Temperature, oxygen concentration, pH-value, P. rubescens cell density and microcystin concentration were recorded and the fish were observed for behavioural changes and examined for parasite infestations. Gill ventilation rates, general condition factors and mortalities were determined and liver, kidney, gut and gill were assessed histopathologically and immunhistologically.
Depending on the cell density, exposed fish showed behavioural changes, including increased ventilation rates possibly representing a physiological stress response. Susceptibility to ectoparasitic infestation and increased mortality in exposed fish suggested P. rubescens associated effects on fish fitness. Histopathological alterations in liver, gastrointestinal tract and kidney, which were also immunopositive for microcystin suggested causality of tissue damage and the presence of microcystins. In contrast, observed gill pathology appeared to result primarily from mechanical abrasion and irritation due to ectoparasitic infestation. The current exposure experiment confirmed the hypothesis that subchronic and chronic exposure to low cyanobacterial cell densities and hence microcystins can exacerbate physiological stress and sustained pathological alterations in exposed coregonids. The study therefore supports the theory that P. rubescens blooms may be causal to the observed weight reduction and hence fitness of coregonids in pre-alpine lakes such as Lake Ammersee (Germany).

Lade...
Vorschaubild
Veröffentlichung

Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus)

2006, Ernst, Bernhard, Höger, Stefan J., O'Brien, Evelyn, Dietrich, Daniel R.

The microcystin-producing cyanobacterium Planktothrix is one of the most widespread genera amongst toxin producing cyanobacteria in European lakes. In particular, the metalimnic blooms of Planktothrix rubescens have been associated with growing problems in the professional freshwater fishery as a decrease in yearly yields in the important coregonids fishery often coincides with the appearance of P. rubescens. P. rubescens is a cyanobacterial species known to produce toxic compounds, e.g. microcystins. Although microcystins have been reported to affect fish health, behaviour, development and growth and have also been associated with feral fish kills, there is currently no specific information on the effects of toxic Planktothrix filaments in fish and especially coregonids. Therefore, the aim of this study was to investigate the effects of an environmentally relevant dose of P. rubescens filaments orally applied to coregonids and to discuss the findings in the context of microcystin toxicity previously reported in carp and trout.
A single dose of P. rubescens culture, at a density of 80,000 cells per 120 μl, was applied to coregonids thus corresponding to 0.6 0.9 μg microcystin-LRequiv./kg body weight. Behavioural changes and opercular beat rates, growth, hepatosomatic index, condition and plasma glucose were determined. Liver, kidney, gill and the gastrointestinal tract were assessed histopathologically and immunhistologically. Exposed fish showed behavioural changes, increased opercular beat rates and elevated plasma glucose levels, possibly representing a physiological stress response. Histopathological alterations in liver, gastrointestinal tract and kidney, also immunopositive for microcystin suggested causality of tissue damage and the in situ presence of microcystins.
The observed combination of stress and organ damage may explain the frequently reduced weight and thus the fitness noted in coregonids subjected to regular occurrences of stratified and dispersed P. rubescens blooms, e.g. in lake Ammersee, Bavaria, Germany.

Lade...
Vorschaubild
Veröffentlichung

Toxicity of the cyanobacterial cyclic heptapeptide toxins microcystin-LR and -RR in early life-stages of the African clawed frog (Xenopus laevis)

2000, Fischer, Werner Jürgen, Dietrich, Daniel R.

Numerous cyanobacterial species are capable of producing potent toxins, which have been known to cause intoxications and fatalities in wildlife, livestock and humans. Microcystis is amongst the most ubiquitously distributed blue green algal genus and almost invariably produces cyclic heptapeptide toxins called microcystins (MC). These toxins are highly persistent in water (several weeks). Highest concentrations are found in shallow littoral areas, the primary environment for aquatic early life-stage development. Therefore, the present study focussed on the potential embryotoxic effects of MC (MC-LR and -RR) in early life-stages of the amphibian Xenopus laevis. The endpoints chosen were mortality, malformation and growth inhibition. To achieve an improved dose-response relationship the uptake of MC was quantified simultaneously, using a radiolabeled derivative of MC-LR. As one of the best described molecular mechanisms of MC toxicity involves the specific inhibition of serine/threonine protein phosphatases-1 and -2A (PP), essential enzymes involved in the mechanisms of cell cycle regulation and maintenance of cellular morphology, the inhibition of PP in X. laevis exposed to MC was monitored. For this the presence of both PP-1 and PP-2A was confirmed by means of SDS-PAGE and immunoblotting. Second, the capacity of MC to inhibit X. laevis embryo-larval PP was corroborated by in vitro incubation of embryo-larval homogenates with MC-LR and -RR and subsequent determination of PP-inhibition. No increased mortality, malformation, or growth inhibition was observed even at the highest MC concentrations employed. MC had neither a demonstrable inhibitory effect on X. laevis PP-activity in vivo in the first 96 h of exposure. However, as of 96 and 120 h exposure a significant inhibition of PP activity was observed at the highest dose (2000 μg/l) in MC-LR and MC-RR exposed embryo-larvae, respectively. By the same token, no notable amounts of radiolabeled [3H]-MC-LR were taken up during the first 96 h, whereas a drastic increase in [3H]-MC-LR was observed after feeding of the larvae had commenced. The [3H]-MC-LR concentration was consistently found to be highest in the viscerothoracal sections of the larvae (2112±429 μg MC/kg dry weight after 120 h). The present findings indicate that transchorional/transdermal absorption of MC in X. laevis is minimal or absent and that oral uptake of MC with ambient water is necessary for the development of MC related toxicity. Furthermore, the comparison of the MC doses used in this study with the concentrations reported in surface waters indicate that early life-stages of amphibians (up to 5 days of development) are unlikely to be affected by cyanobacterial blooms producing MC-LR and -RR.