Person:
Nowak, Ulrich

Loading...
Profile Picture
Email Address
ORCID
0000-0003-2925-6774
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Nowak
First Name
Ulrich
Name

Search Results

Now showing 1 - 10 of 205
No Thumbnail Available
Publication

Magnon squeezing in conical spin spirals

2023-04-13, Wuhrer, Dennis, Rózsa, Levente, Nowak, Ulrich, Belzig, Wolfgang

We investigate squeezing of magnons in a conical spin spiral configuration. We find that while the energy of magnons propagating along the k and the −k directions can be different due to the non-reciprocal dispersion, these two modes are connected by the squeezing, hence can be described by the same squeezing parameter. The squeezing parameter diverges at the center of the Brillouin zone due to the translational Goldstone mode of the system, but the squeezing also vanishes for certain wave vectors. We discuss possible ways of detecting the squeezing.

Loading...
Thumbnail Image
Publication

Néel vector switching and terahertz spin-wave excitation in Mn2Au due to femtosecond spin-transfer torques

2023, Weißenhofer, Markus, Foggetti, Francesco, Nowak, Ulrich, Oppeneer, Peter M.

Efficient and fast manipulation of antiferromagnets has to date remained a challenging task, hindering their application in spintronic devices. For ultrafast operation of such devices, it is highly desirable to be able to control the antiferromagnetic order within picoseconds—a timescale that is difficult to achieve with electrical circuits. Here, we demonstrate that bursts of spin-polarized hot-electron currents emerging due to laser-induced ultrafast demagnetization are able to efficiently excite spin dynamics in antiferromagnetic Mn2Au by exerting a spin-transfer torque on femtosecond timescales. We combine quantitative superdiffusive transport and atomistic spin-model calculations to describe a spin-valve-type trilayer consisting of Fe|Cu|Mn2Au. Our results demonstrate that femtosecond spin-transfer torques can switch the Mn2Au layer within a few picoseconds. In addition, we find that spin waves with high frequencies up to several THz can be excited in Mn2Au.

Loading...
Thumbnail Image
Publication

Topology dependence of skyrmion Seebeck and skyrmion Nernst effect

2022-04-26, Weißenhofer, Markus, Nowak, Ulrich

We explore the dynamics of skyrmions with various topological charges induced by a temperature gradient in an ultra-thin insulating magnetic film. Combining atomistic spin simulations and analytical calculations we find a topology-dependent skyrmion Seebeck effect: while skyrmions and antiskyrmions move to the hot regime, a topologically trivial localized spin structure moves to the cold regime. We further reveal the emergence of a skyrmion Nernst effect, i.e. finite, topology-dependent velocities transverse to the direction of the temperature gradient. These findings are in agreement with accompanying simulations of skyrmionic motion induced by monochromatic magnon currents, allowing us to demonstrate that the magnonic spin Seebeck effect is responsible for both, skyrmion Seebeck and Nernst effect. Furthermore we employ scattering theory together with Thiele's equation to identify linear momentum transfer from the magnons to the skyrmion as the dominant contribution and to demonstrate that the direction of motion depends on the topological magnon Hall effect and the topological charge of the skyrmion.

Loading...
Thumbnail Image
Publication

Magnonic Proximity Effect in Insulating Ferro- and Antiferromagnetic Trilayers

2022, Brehm, Verena, Evers, Martin, Ritzmann, Ulrike, Nowak, Ulrich

The design of spin-transport based devices such as magnon transistors or spin valves will require multilayer systems composed of different magnetic materials with different physical properties. Such layered structures can show various interface effects, one class of which being proximity effects, where a certain physical phenomenon that occurs in the one layers leaks into another one. In this work a magnetic proximity effect is studied in trilayers of different ferro- and antiferromagnetic materials within an atomistic spin model. We find the magnetic order in the central layer - with lower critical temperature - enhanced, even for the case of an antiferromagnet surrounded by ferromagnets. We further characterize this proximity effect via the magnon spectra which are specifically altered, especially for the case of the antiferromagnet in the central layer.

Loading...
Thumbnail Image
Publication

Calculating spin-lattice interactions in ferro- and antiferromagnets : The role of symmetry, dimension, and frustration

2023-03-31, Lange, Hannah, Mankovsky, Sergiy, Polesya, Svitlana, Weißenhofer, Markus, Nowak, Ulrich, Ebert, Hubert

Recently, the interplay between spin and lattice degrees of freedom has gained a lot of attention due to its importance for various fundamental phenomena as well as for spintronic and magnonic applications. Examples are ultrafast angular momentum transfer between the spin and lattice subsystems during ultrafast demagnetization, frustration driven by structural distortions in transition-metal oxides, or in acoustically driven spin-wave resonances. In this work, we provide a systematic analysis of spin-lattice interactions for ferro- and antiferromagnetic materials and focus on the role of lattice symmetries and dimensions, magnetic order, and the relevance of spin-lattice interactions for angular momentum transfer as well as magnetic frustration. For this purpose, we use a recently developed scheme, which allows an efficient calculation of spin-lattice interaction tensors from first principles. In addition to that, we provide a more accurate and self-consistent scheme to calculate ab initio spin-lattice interactions by using embedded clusters, which allows us to benchmark the performance of the scheme introduced previously.

No Thumbnail Available
Publication

Magnetic properties of hematite revealed by an ab initio parameterized spin model

2023, Dannegger, Tobias, Deák, András, Rózsa, Levente, Galindez-Ruales, Edgar, Das, Shubhankar, Baek, Eunchong, Kläui, Mathias, Szunyogh, László, Nowak, Ulrich

Hematite is a canted antiferromagnetic insulator, promising for applications in spintronics. Here we present ab initio calculations of the tensorial exchange interactions of hematite and use them to understand its magnetic properties by parametrizing a semiclassical Heisenberg spin model. Using atomistic spin dynamics simulations, we calculate the equilibrium properties and phase transitions of hematite, most notably the Morin transition. The computed isotropic and Dzyaloshinskii–Moriya interactions result in a Néel temperature and weak ferromagnetic canting angle that are in good agreement with experimental measurements. Our simulations show how dipole-dipole interactions act in a delicate balance with first and higher-order on-site anisotropies to determine the material's magnetic phase. Comparison with spin-Hall magnetoresistance measurements on a hematite single crystal reveals deviations of the critical behavior at low temperatures. Based on a mean-field model, we argue that these differences result from the quantum nature of the fluctuations that drive the phase transitions.

Loading...
Thumbnail Image
Publication

Angular momentum transfer via relativistic spin-lattice coupling from first principles

2022-03-30T08:35:09Z, Mankovsky, Sergiy, Polesya, Svitlana, Lange, Hannah, Weißenhofer, Markus, Nowak, Ulrich, Ebert, Hubert

The transfer and control of angular momentum is a key aspect for spintronic applications. Only recently, it was shown that it is possible to transfer angular momentum from the spin system to the lattice on ultrashort time scales. In an attempt to contribute to the understanding of angular momentum transfer between spin and lattice degrees of freedom we present a scheme to calculate fully-relativistic spin-lattice coupling parameters from first-principles. By treating changes in the spin configuration and atomic positions at the same level, closed expressions for the atomic spin-lattice coupling parameters can be derived in a coherent manner up to any order. Analyzing the properties of these parameters, in particular their dependence on spin-orbit coupling, we find that even in bcc Fe the leading term for the angular momentum exchange between the spin system and the lattice is a Dzyaloshiskii-Moriya-type interaction, which is due to the symmetry breaking distortion of the lattice.

Loading...
Thumbnail Image
Publication

Temperature dependence of current-driven and Brownian skyrmion dynamics in ferrimagnets with compensation point

2023-02-24, Weißenhofer, Markus, Nowak, Ulrich

Magnetic skyrmions are topological spin textures and promising candidates for novel spintronic applications. Recent studies on the current-driven dynamics of ferromagnetic (FM) skyrmions revealed that they exhibit an undesirable transverse motion, the skyrmion Hall effect. For antiferromagnetic (AFM) skyrmions, a vanishing skyrmion Hall effect was predicted, along with faster dynamics. However, their zero net magnetization obstructs efficient detection. Ferrimagnetic (FI) materials promise to combine both advantages: fast, AFM-like dynamics and easy read-out via stray fields. Here, we investigate the current-driven and Brownian dynamics of skyrmions in a FI with a compensation point. We perform atomistic spin dynamics simulations based on a model Hamiltonian and the stochastic Landau-Lifshitz-Gilbert equation supplemented with spin-orbit torques, accompanied by analytical calculations based on a collective coordinate approach. Our results unveil a nonmonotonic temperature dependence of the velocities and the diffusion coefficient with a strong enhancement at the angular momentum compensation temperature, due to scaling from FM- to AFM-like dynamics. These findings open up a new pathway for the efficient manipulation of skyrmion dynamics via temperature.

Loading...
Thumbnail Image
Publication

Nutational switching in ferromagnets and antiferromagnets

2022-07-18T12:47:58Z, Winter, Lucas, Großenbach, Sebastian, Nowak, Ulrich, Rózsa, Levente

It was demonstrated recently that on ultrashort time scales magnetization dynamics does not only exhibit precession but also nutation. Here, we investigate how nutation can contribute to spin switching leading towards ultrafast data writing. We use analytic theory and atomistic spin simulations to discuss the behavior of ferromagnets and antiferromagnets in high-frequency magnetic fields. In ferromagnets, linearly polarized fields align the magnetization perpendicular to the external field, enabling $90^{\circ}$ switching. For circularly polarized fields in the $xy$ plane, the magnetization tilts to the $z$ direction. During this tilting, it rotates around the $z$ axis, allowing $180^{\circ}$ switching. In antiferromagnets, external fields with frequencies higher than the nutation frequency align the order parameter parallel to the field direction, while for lower frequencies it is oriented perpendicular to the field. The switching frequency increases with the magnetic field strength, and it deviates from the Larmor frequency, making it possible to outpace precessional switching in high magnetic fields.

Loading...
Thumbnail Image
Publication

Current-induced switching of antiferromagnetic order in Mn2 Au from first principles

2022, Selzer, Severin, Salemi, Leandro, Deák, András, Simon, Eszter, Szunyogh, László, Oppeneer, Peter M., Nowak, Ulrich

It is well established that it is possible to switch certain antiferromagnets electrically, yet the interplay of Néel-spin-orbit torques and thermal activation is only poorly understood. Combining ab initio calculations and atomistic spin dynamics simulations we develop a multiscale model to study the current-induced switching in Mn2Au. We compute from first principles the strength and direction of the electrically induced magnetic moments, caused by the Rashba-Edelstein effect, and take these into account in atomistic spin dynamics simulations. Our simulations reveal the switching paths as well as the timescales for switching. The size of the induced moments, however, turns out to be insufficient to lead to fully deterministic switching. Instead, we find that a certain degree of thermal activation is required to help overcome the relevant energy barrier.